
Communication-balanced Job
Allocation using SLURM

Gagandeep Mangat1* and Preeti Malakar2

1Qualcomm Inc.
2Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
*Work done while at IIT Kanpur

28th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP)
IPDPS 2025

2

Performance Variability in HPC

Bhatele et al., “Case of Performance Variability on Dragonfly-based Systems”, IPDPS 2020

3

Impact of Job Interference

Mishra et al., “Communication-aware Job Scheduling using SLURM”, ICPPW 2020

Variation in
Job1 due to

Job2

4

Variation in Network Bandwidth

Kumar et al., “Network and Load-Aware Resource Manager for MPI Programs”, ICPPW 2020

Variation in pairwise
effective bandwidth

between nodes
connected in a tree

topology

5

Shared Communication Paths

Sharma et al., “Visual Analysis of Congestion and Interference in Supercomputers”, HiPC SRS 2023

6

Communication Patterns

Agrawal et al., “IPMPI: Improved MPI Communication Logger. ”, ExaMPI@SC 2022

7

• Communication performance variation
• Application bandwidth requirements vary
• Distinct communication patterns
• Job interference

Communication plays a huge role in real-time performance

Communication Challenges Summary

8

Job Request Parameters

#SBATCH –N 2

#SBATCH --ntasks-per-node=2

#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

#SBATCH --time=00:10:00

#SBATCH --partition=standard mpirun –np 4 ./exe

• Number of processes
• Wall-clock time
• Communication metric

● Jokanovic et al. [IPDPS’15] proposed to eliminate job interactions in the

neighborhood to minimize contention and load on switches

● Jeannot et al. [EuroPar’10] proposed TopoMatch that maps processes to resources in

order to reduce the communication cost of the application

● Pollard et al. [SC’18] propose a fat-tree network topology-aware node allocation

policy in the Flux resource management that allocates isolated partitions to jobs for

eliminating inter-job interference

● Mishra et al. [ICPPW’20] proposed algorithms based on the cluster state and the

communication patterns of MPI collective calls

● In contrast, we allocate resources based on the communication matrix and current

switch load to reduce the overall cost of the job

9

Related Work

10

Communication-balanced Allocation

Objectives

• Consider communication as an additional parameter while allocating jobs

• Partition node request to groups of processes such that intra-group
communication volume is high and inter-group communication volume is low

• Allocate groups of processes that do not incur high communication volume on
separate nodes

Allocate groups of processes to leaf switches of a fat-tree as per the
communication characteristics of the application such that most of the
communications within an application are contained within a switch.

11

30 1 10

Job Allocation on Fat-tree Topology

2
20 1 10 3

Intra-switch vs. Inter-switch

Designing Topology-Aware Collective Communication Algorithms for Large Scale InfiniBand Clusters: Case Studies with Scatter and Gather 12

13

Communication Matrix

0 100 20 180

100 0 70 250

20 70 0 80

180 250 80 0

0

1

2

3

10 2 3

An example
communication matrix An example current system state when a job J will be

allocated nodes

14

Communication-balanced (Combal)

I. Find the optimal lowest level switch and sort the leaf switches in decreasing

order of number of free nodes (L). Find the median (L[m]).

Example: Sorted order: s2:4, s1:3, s0: 2

15

Communication-balanced (Combal)

II-a. Partition the requested #nodes (R) using a graph partitioner (METIS) to
reduce inter-partition communication volume

Required number of partitions (R / free(L[m]))

Example: 6 / 3 = 2

16

METIS Graph Partitioner

● Multilevel k-way partitioning

● Three stages: Coarsening, Partitioning,
Uncoarsening

● Resultant partitions have high intra-
partition volume and low inter-
partition volume

Devine K, Boman EG, Karypis G (2006) Partitioning and load
balancing for emerging parallel applications and architectures,
Parallel Processing for Scientific Computing, SIAM.

17

METIS Graph Partitioner

Devine K, Boman EG, Karypis G (2006) Partitioning and load
balancing for emerging parallel applications and architectures,
Parallel Processing for Scientific Computing, SIAM.

options[METIS OPTION UFACTOR]

Specifies the maximum allowed load
imbalance among the partitions

18

Size of Partitions (uCombal)

II-b. Control the size of partitions using unbalanced factor (free(L[0] / free(L[m]))

Unbalanced factor = 4 / 3 = 2

19

Partition Mapping
• SLURM outputs groups of nodes
• Map entire partitions to leaf-switches

Partitioning using
Combal

20

Partitioning
using
uCombal

21

22

struct node_record {
char *name; /* name of the node */
uint16_t cpus; /* count of processors on the node */
uint16_t cores; /* number of cores per socket */
uint16_t threads; /* number of threads per core */
struct node_record *node_next; /* next entry with same hash index */
int leaf_switch; /* index of the leaf switch connected to the node */

};

SLURM Code Modifications

23

struct switch_record {
int level; /* level in hierarchy, leaf=0 */
char *name; /* switch name */
bitstr_t *node_bitmap; /* bitmap of all nodes descended from this switch */
uint16_t parent; /* index of parent switch */
int comm_jobs; /* number of communication-intensive jobs on this switch */
int num_nodes; /* number of direct descendant nodes*/

};

SLURM Code Modifications

The selected nodes on a leaf switch are stored in the node bitmap field of the switch record.

24

SLURM Code Modifications

• (u)Combal is invoked whenever a new job is scheduled by SLURM
• Number of free nodes on every switch is the input
• METIS API is invoked from SLURM
• Partitions output by METIS are used in SLURM to map the

processes to nodes in each leaf switch

Experimental Evaluations

25

26

● SLURM simulator [1]

● Real job logs: Intrepid, Mira, and Theta supercomputers [2]

Simulation Based Evaluations Using Real Job Logs

User JobID Timelimit Submit Eligible Start End Elapsed NNodes NCPUS NodeList Wait Turnaround

gagandeep 17344 UNLIMITED "2022-06-15 11:48:24" "2022-06-15 11:48:24" "2022-06-15 11:48:24" "2022-06-15
12:10:24" 00:22:00 128 128 cn[209-224,241-256,289-304,321-336,401-464] 0 26400

gagandeep 17345 UNLIMITED "2022-06-15 11:48:24" "2022-06-15 11:48:24"
"2022-06-15 11:48:24" "2022-06-15 12:02:41" 00:14:17 16 16 cn[385-400] 0 17140

gagandeep 17346 365-00:00:00 "2022-06-15 11:48:24" "2022-06-15 11:49:37"
"2022-06-15 11:49:49" "2022-06-15 12:04:22" 00:14:33 16 16 cn[369-384] 240 17700

[1] https://github.com/SchedMD/slurm

[2] https://reports.alcf.anl.gov/data/

https://github.com/SchedMD/slurm
https://reports.alcf.anl.gov/data/

27

User JobID Timelimit Submit Start End Elapsed NNodes NCPUS NodeList Wait
Turnaround

Add Communication Data

User JobID Timelimit Submit Start End Elapsed NNodes NCPUS NodeList Wait
Turnaround Communication Matrix

Agrawal and Malakar, “IPMPI: Improved MPI Communication Logger.”, ExaMPI@SC 2022

4-process HPCG Communication Matrix obtained from IPMPI

28

Challenge 1: Applications

• Identify six top unique
jobs using user_id and
project_id

• Extracted equal
number of entries
(167*6)

• Map six known
applications to these
jobs (using same
number of processes)

29

Modified Job Log

JobID SubmitTime Runtime Nodes Comment(Communication matrix) Percentage
1 0 1320 128 1:/home/gagandeep/matrices/comm_ipmpi_miniAMR_32_128_4_2.mat 90.17
2 0 857 16 1:/home/gagandeep/matrices/comm_ipmpi_miniAMR_4_16_4_1.mat 70.99
3 73 873 16 1:/home/gagandeep/matrices/comm_ipmpi_miniAMR_4_16_4_1.mat 70.99
4 73 866 16 1:/home/gagandeep/matrices/comm_ipmpi_miniAMR_4_16_4_1.mat 70.99
5 103 858 16 1:/home/gagandeep/matrices/comm_ipmpi_miniAMR_4_16_4_1.mat 70.99
6 103 882 16 1:/home/gagandeep/matrices/comm_ipmpi_miniAMR_4_16_4_1.mat 70.99
7 281 746 64 1:/home/gagandeep/matrices/comm_ipmpi_lammps_16_64_4_0.mat 57.31
8 282 749 64 1:/home/gagandeep/matrices/comm_ipmpi_lammps_16_64_4_0.mat 57.31
9 295 405 16 0:/home/gagandeep/matrices/comm_ipmpi_MiniGhost_4_16_4_0.mat 5.47
10 295 401 16 0:/home/gagandeep/matrices/comm_ipmpi_MiniGhost_4_16_4_0.mat 5.47

Communication-intensive applications categorization (user-defined): >40% communication time

30

● SLURM requires the network configuration file (topology.conf)

● Used supercomputer at IIT Kanpur to retrieve the network

topology and application communication matrices

● Capped at 512 cores of PARAM Sanganak, IIT Kanpur

● avoid high queue waiting times to collect the real

communication matrices

Challenges 2 and 3: Topology and Simulation

31

Evaluation Methodology

● 1002 job logs from each of the three job logs (four runs)

● Run the jobs using default SLURM allocation algorithm (FCFS with

backfilling)

● Run the jobs using TopoMatch algorithm process mapping

● Run the jobs using SLURM + (u)Combal allocation algorithm to

obtain the process and node allocation

32

Modified runtime obtained using our communication cost model

Challenge 4: Runtime Estimation

𝑇𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑐𝑜𝑚𝑚

𝑇𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑐𝑜𝑚𝑚′

𝑇𝑐𝑜𝑚𝑚′ =
𝑇𝑐𝑜𝑚𝑚 *

𝑁𝑒𝑤 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

𝑂𝑙𝑑 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

33

Communication Cost Model

d(ni, nj) = 2 * lowest level of common switch

Agarwal et al., Topology-aware task mapping for reducing communication contention on large
parallel machines, IPDPS 2006

34

Contention Factor

35

Evaluation Methodology

● 1002 job logs from each of the three job logs (four runs)

● Run the jobs using default SLURM allocation algorithm (FCFS with

backfilling)

● Run the jobs using TopoMatch algorithm process mapping

● Run the jobs using SLURM + (u)Combal allocation algorithm to

obtain the process and node allocation

● Run the jobs using SLURM + (u)Combal allocation algorithm using

the modified runtimes

36

Results

Evaluation Metrics

1. Execution times (runtimes)

2. Wait times

3. Hop bytes

4. Total and average inter-switch and intra-switch communications

37

Execution Time (hours) for Intrepid Job Log

Jobs Default TopoMatch uCombal Combal

303 1644 1637 1641 1631

● Reduced for all three algorithms in comparison to default algorithm
● Reduction in time mostly for miniAMR 32 nodes and miniFE 16 nodes

38

Wait Time (hours) for Mira Job Log

Decreased by 2.9% (758 hours) for uCombal algorithm and 1.36% (354 hours) for
Combal algorithm.

Jobs Default TopoMatch uCombal Combal

410 25807 26110 25049 25453

39

Execution Time (hours) for Theta Job Log

● Decrease of 5.8% with Combal and uCombal
● Majorly reduced for miniAMR 256-node and miniMD 256-node jobs

Jobs Default TopoMatch uCombal Combal

501 675 664 637 637

40

Wait Time (hours) for Theta Job Log

25.6% improvement with uCombal algorithm

Jobs Default TopoMatch uCombal Combal

501 47493 40987 35821 35291

41

Total Inter-Switch Communications for Theta Job Log

Lesser for Combal/uCombal in comparison to Default allocation which resulted in
better runtime/wait times.

42

Total Intra-Switch Communications for Theta Job Log

More for Combal/uCombal in comparison to Default allocation which resulted in
better runtime/wait times.

43

Cost Comparison of A Single Job

● HPCG 64-node
job

● Default
allocation cost:
7.27e11

● Combal
allocation cost:
5.48e11

● 24.6%
improvement

Switch
Number

Selected
Nodes

Default Allocation
(Node numbers)

Combal Allocation
(Node numbers)

s17 cn[161-176] 0 – 15 0, 4, 8, .., 60

s18 cn[177-192] 16 – 31 1, 5, 9, .., 61

s19 cn[193-208] 32 – 47 2, 6, 10, .., 62

s20 cn[225-240] 48 – 63 3, 7, 11, .., 63

44

Conclusions

● Proposed the Combal and uCombal algorithms to reduce the overall

execution and wait time for a job by using its communication pattern.

● Compared with the default SLURM algorithm and the TopoMatch

algorithm.

● Obtained a maximum improvement of 5.6% in the execution time and a

maximum improvement of 25.6% in the wait time using the Theta job

log.

45

Future Work

● Extend algorithm to other cluster topologies.
● Redesign using other plugins in SLURM

● Redefine cost model

● Use other graph partitioning libraries such as Scotch.

● Design I/O aware scheduling algorithms.

● Experiment with more applications and jobs.

46

Thank You

Questions?
pmalakar@iitk.ac.in

mailto:pmalakar@iitk.ac.in

	Slide 1: Communication-balanced Job Allocation using SLURM
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Partitioning using Combal
	Slide 21: Partitioning using uCombal
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Experimental Evaluations
	Slide 26: Simulation Based Evaluations Using Real Job Logs
	Slide 27: User JobID Timelimit Submit Start End Elapsed NNodes NCPUS NodeList Wait Turnaround
	Slide 28: Challenge 1: Applications
	Slide 29
	Slide 30: Challenges 2 and 3: Topology and Simulation
	Slide 31: Evaluation Methodology
	Slide 32: Challenge 4: Runtime Estimation
	Slide 33: Communication Cost Model
	Slide 34: Contention Factor
	Slide 35: Evaluation Methodology
	Slide 36
	Slide 37: Evaluation Metrics
	Slide 38: Execution Time (hours) for Intrepid Job Log
	Slide 39: Wait Time (hours) for Mira Job Log
	Slide 40: Execution Time (hours) for Theta Job Log
	Slide 41: Wait Time (hours) for Theta Job Log
	Slide 42: Total Inter-Switch Communications for Theta Job Log
	Slide 43: Total Intra-Switch Communications for Theta Job Log
	Slide 44: Cost Comparison of A Single Job
	Slide 45: Conclusions
	Slide 46: Future Work
	Slide 47: Thank You Questions? pmalakar@iitk.ac.in

