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A BRIEF HISTORY

› Task scheduling work started in the 1950s

› A survey in 1979 by Graham classified many different variants

» Did not consider heterogeneous communication

› Hwang et. al. were the first to study heterogeneous communication in 1989

» Consider homogeneous computation

› Su et. al address fully heterogeneous case in 2019

› Distributed computing goes mainstream – tons of heuristic algorithms are proposed

» BIL, CPoP, ETF, FCP, FLB, GDL, HEFT, MinMin, MaxMin, MCT, MET, OLB, SMT, WBA, …

› Modern use cases (ML/data science workflows, IoT, etc.) drive benchmarking efforts and 

theoretical advances

› Bazzi et. al. show scheduling is not approximable within a constant factor in 2015
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COMPARING SCHEDULING ALGORITHMS

› Scheduling is NP-Hard and not approximable, but what about for practical situations?

» Scheduling an ML workflow

» Running a scientific workflow on a supercomputing system

» Collecting and processing data from an IoT system

» Running analyses in a tactical edge environment

› Many tasks scheduling heuristic algorithms have been proposed

» HEFT, CPoP, BIL, ETF, FCP, FLB, GDL, MinMin, MaxMin, MCT, MET, OLB, SMT, WBA, …

› SAGA: Scheduling Algorithms Gathered

» 17 Algorithm Implementations

» 15 Dataset Generators

» Tools for Benchmarking

» Tools for Adversarial Analysis
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COMPARING SCHEDULING ALGORITHMS

› Many of the heuristic algorithms are similar to each other

› List Scheduling Algorithms (HEFT, CPoP, ETF, etc.):

1. Compute priorities for tasks 

2. Greedily schedule tasks to node that minimizes/maximizes a cost function

› Question: How do individual algorithmic differences affect algorithm performance and runtime?
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage insertion-based

append-only
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage

critical path
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COMPARING ALGORITHMIC COMPONENTS
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage

» 72 possible scheduling algorithms total



16

Loyola Marymount 

University

COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage

» 72 possible scheduling algorithms total

HEFT
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage

» 72 possible scheduling algorithms total

CPoP
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage

» 72 possible scheduling algorithms total

» 20 datasets

» 4 types: in-trees, out-trees, chains, cycles

» 5 CCRs: 
1

5
,
1

2
, 1, 2, 5

» 100 problem instances in each dataset

» 144,000 evaluations

in-trees out-trees

chains
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COMPARING ALGORITHMIC COMPONENTS

» Algorithmic components:

» Priority Function: UpwardRank, CPoPRank, 

ArbitraryTopological

» Comparison Function: EFT, EST, Quickest

» Insertion-based vs. append-only scheduling

» Critical path reservation vs no reservation

» Sufferage vs no sufferage

» 72 possible scheduling algorithms total

» 20 datasets

» 4 types: chains, in-trees, out-trees, cycles

» 5 CCRs: 
1

5
,
1

2
, 1, 2, 5

» 100 problem instances in each dataset

» 144,000 evaluations

cycles
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MAKESPAN/RUNTIME RATIO

» For a network 𝑁 and task graph 𝐺

» Let 𝑀𝐴(𝑁, 𝐺) denote the makespan of algorithm 𝐴 for the problem instance 𝑁, 𝐺

» The makespan ratio of algorithm 𝐴 against algorithm B is

𝑀𝑅𝐴,𝐵(𝑁, 𝐺) =
𝑀𝐴 𝑁, 𝐺

𝑀𝐵(𝑁, 𝐺)

» The runtime ratio of algorithm 𝐴 against algorithm 𝐵 is

𝑅𝑅𝐴,𝐵 𝑁, 𝐺 =
𝑇𝐴 𝑁, 𝐺

𝑇𝐵(𝑁, 𝐺)

* how many times worse A is 

than B on a particular instance

* how many times longer does A take 

to run than B on a particular instance



21

Loyola Marymount 

University

PARETO-OPTIMAL SCHEDULERS

» Pareto-optimal: for at least one dataset, 

no other algorithm exists that has better 

average makespan ratio and average 

runtime ratio

» 20/24 pareto-optimal schedulers have 

never been studied before
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EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» UpwardRank (UR)

» ArbitraryTopological (AT)

» CPoPRank (CR)
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EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» Append-only vs Insertion-based
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EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» Append-only vs Insertion-based

» Sufferage
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EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» Append-only vs Insertion-based

» Sufferage

» Critical path reservation
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EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» Append-only vs Insertion-based

» Sufferage

» Critical path reservation

» Comparison Function



28

Loyola Marymount 

University

EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» Append-only vs Insertion-based

» Sufferage

» Critical path reservation

» Comparison Function
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EFFECTS OF INDIVIDUAL ALGORITHMIC COMPONENTS

» Priority Function

» Append-only vs Insertion-based

» Sufferage

» Critical path reservation

» Comparison Function

» Results look different for specific datasets!

Overall

cycles dataset w/ CCR=5
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INTERACTIONS

» Append-only Strategy and Priority Function

» Append-only strategy is particularly bad 

with CPoP ranking
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INTERACTIONS

» Append-only Strategy and Priority Function

» Append-only strategy is particularly bad 

with CPoP ranking

» CCR and Comparison Function

» Quickest strategy is particularly bad for 

compute-heavy task graphs
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INTERACTIONS

» Append-only Strategy and Priority Function

» Append-only strategy is particularly bad 

with CPoP ranking

» CCR and Comparison Function

» Quickest strategy is particularly bad for 

compute-heavy task graphs

» Dataset Type and Comparison Function

» The quickest strategy is particularly bad for 

the out-tree task graph structure
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INTERACTIONS

» Append-only Strategy and Priority Function

» Append-only strategy is particularly bad 

with CPoP ranking

» CCR and Comparison Function

» Quickest strategy is particularly bad for 

compute-heavy task graphs

» Dataset Type and Comparison Function

» The quickest strategy is particularly bad for 

the out-tree task graph structure

» Dataset Type and Critical Path

» Critical path reservation is particularly bad 

for in-tree task graph structures
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CONCLUSION

› Generalized Parametric Scheduler: Proposed a modular list-

scheduling algorithm that enables flexible combination of five key 

algorithmic components.

› Benchmarking: Evaluated 72 unique schedulers generated from all 

component combinations on 20 datasets, encompassing diverse 

graph structures and CCRs.

› Component-level Insights: Analyzed both individual and combined 

effects of components on makespan and runtime across datasets.

› Dataset-specific Behavior: Revealed how component effectiveness is 

problem-dependent, highlighting complex interactions between 

components and dataset characteristics.

› Future Work:

» Implement new algorithmic components (e.g., k-depth lookahead)

» Incorporate additional datasets

» Leverage findings to design adaptive or hybrid schedulers tuned to 

application characteristics
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