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What is Co-Scheduling?

o Problem : System Throughput ~ Proposed Solution: Co-Scheduling

e An application typically spreads across twice the number of nodes compared to the classical
scheduling case, but occupies half the number of cores on each node. Thus, two jobs can be allocated
to the same node at the same time
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What is Co-Scheduling?

[ Compact mode:
- Traditional scheduling
- Exclusive node

o O
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\ allocation y
(Spread mode: ) — ol s a A
Urgent computing : 8 o
- Double node spread e B 8 g A
- Half-node occupancy = ||| 8 8 g 18

\ - Remaining half leftidle J

Co-location (striped) mode:
- Spread mode execution
- Idle halves occupied by other
jobs

compact spread striped

o resource contention in shared node resources can introduce performance degradation, leading to job slowdowns and
counteracting these benefits
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Heatmap of application co-locations
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Compact Execution Time

JobSpeedup =
: ! Co-located Execution Time

- pairwise execution of NAS
benchmarks

- Classes: D, E

- Various number of processes
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Heatmap of application co-locations
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Heatmap of application co-locations
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Goal and Infrastructure

(® Goal of this work : Develop models that predict an application’s performance
improvement or degradation when co-located with other applications

e ARIS supercomputer (operated by GRNET, Athens, Greece)
e We utilized the perf Linux tool and mpiP
e Collected Metrics:

o FLOPS
o  Memory Bandwidth
o LLC hits/misses
o MPI stats
m MPItime

m  MPI time per directive

e NAS Parallel Benchmarks (NPB) and SPEChpc 2021 benchmarks
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Model Requirements

ﬁ Need to have:

o High accuracy and precision
o Minimal data use
o  Lightweight profiling
m few hardware counters
m few application runs
o Fast decision

v Nice to have:

o Interpretability
o Generalizable to other machines
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Taxonomy of Application models
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Taxonomy of Application models
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Resource-centric tag-based models

'y Goal : Retrieve a standalone resource consumption-based characterization for each
application 1n the queue 5";5)':521 -
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Resource-centric tag-based models

Static Experiment: (300 applications, 100 experiments)

Baseline Case Sophisticated Case

Evaluation:
valuation:
Mean Job Speedup Slowdowns (%)
12 [Average Improvement: 3.03%] o} — [Average Improvement: -11.03%J
30 1
L1g T, P —
25 4 -
1.16 1 [¢}
20 A
15 1
1.12 i . i i
Baseline Sophisticated Baseline Sophisticated

J = PDPS HRSTab



Taxonomy of Application models
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Empirical Pairwise Model

@ Goal : devise an empirical way to qualitatively predict the heatmap of an
application pool

> use of categorical labels : good, stationary, bad
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Speedup

SPEChpc 2021 benchmarks :
bt.D.256 4 1.04 | 1.00 | 1.09 | 0.98
Speedup 1.4
14 cg.E.512 {NEEER 0.93 [REN 1.12
605.lbm_s 4 1.00 | 0.84 ;
618.tealeaf s VAl 1.19 [ 1.07 1.74 1.57 1.52 ep.E.256 1.00 0.98 -1.2
-1.2
619.clvieaf_s NN 1.13 | 1.03 167142 1.49 £.D.256 116 | 1.11
621.miniswp_s 0.93]0.91 -1.0 i -10
is.E.256 4k : i1%251 1.01 | 0.98
628.pot3d_s MM 1.05 2 .
-0.8 lu.D.256 { 1.11 [ 1.09 | 1.16 | 1.09 0.94 | 0.92 - 08
634.hpgmgfv_s 4 1.
635.weather s 11.12 | 0.94 | 0.91 [ .12 0.92 | 1.05 | 1.00 o UCRIPELE 1.62 151 171 1.54 1.50 1.51 RUeeryiesel
T T T T T T T : 06
2 K2 &7 of 8% &2 a2 IDEPAR 152 142 1.61 145 1.45 1.43 RKERENY]
@@ \e,%\/ \eé/.c)$q/ 0‘8’6/ &A/ ‘é\e}/ sp.D.1
& o of & & & et
X & oY
& & &\, © &v é,ga q(?b P ,f?b q‘,”b ,ﬁ')‘b ’f’h (,go \’q}
OF & ¢ 97 & R

. © OO O Netne sk ety o iens
J. =—PoPs HRSTab



Empirical Pairwise Model
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Empirical Pairwise Model
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Empirical Pairwise Model
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Empirical Pairwise Model
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Compute-bound applications

Speedup
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Memory-bound applications
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Empirical Model
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Empirical Model - Evaluation
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Taxonomy of Application models
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ML-based Classifiers

- Features : the five axes previously presented in the spider plots, normalized
according to system bounds

- Dataset : 218 entries in total, with 70% allocated for training and the remaining 30%

for testing

Labels : good, stationary, bad

Methodology: Train many models, with different hyperparameter combinations,

from 7 different types of models, using 5-fold cross validation and keep the model from

each type with the highest mean cross-validation accuracy score
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ML-based Classifiers

Random Forests . . : 11.97 2.60

Multi-Layer Perceptron : : 0.83 280.15 218

Support Vector Machine ; \ 0.8 2.04 0.95

Q
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3 Logistic Regression : . 4.55 1.07 IS

= =

bouf

K-Nearest Neighbors . : 3.75 =
Gaussian Naive Bayes : ; : 1533 0.81
Gradient Boosting Machine ; : 0.84 58.09 1.15

Mean CV Test Set Precision Training Inference
Accuracy  Accuracy (Good) Time Time

- Ensemble boosting techniques (e.g. RF, GBM) achieved the best overall results
- Low-complexity models (KNN, GNB) failed to grasp the complex, non-linear relations between

the input features
- Neural Networks (MLP) need to be re-evaluated when bigger datasets are available
- Training and inference times appear to be reasonable
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ML-based Classifiers: Combining two models

" NB-GBM y
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- Mispredicting many bad co-locations as good (sacrificing precision) can result in a slowdown in the
overall makespan

- Achieving high accuracy and precision for the “good” label concurrently, is a two-criteria
optimization problem that can be solved by utilizing combinations of models as shown in the Pareto
plot
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Taxonomy of Application models
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ML-based Regression

- Features : MPI time, IPC, FLOPS, and Memory Bandwidth (BW)

- Dataset : 788 entries in total, with 65% allocated for training and the remaining 35%
for testing

Labels : Numerical value of the speedup for each heatmap cell

Methodology: Train many models, with different hyperparameter combinations,
from 7 different types of models (plus a Dummy Regressor used for comparison
purposes), using 5-fold cross validation and keep the model from each type with the
highest mean cross-validation accuracy score
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ML-based Regression

Monotonic correlation

1
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- moderate correlation of the input features with the dependent variable
(speedup)
- Hint that non-linear relations are at play
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ML-based Regression

XGBoost Regressor[i0K:[s]

Gradient Boosting Regressor l0K:]®}

Svi

0.6

KNNeighborsRegressor| : . t : N[Ol 0.55

ElasticNet{SN0 8] 3 L 53.26 0.11 0.0

0.19 0.14 57.25

2
N
Normalized Scale

pUILYY 0.00 019 0.14 5290 0.00

- Linear models underperformed due to low feature-speedup correlation
- Ridge best among linear models; SVR and KNN better but KNN overfitted
- Boosting models highest R?, lowest RMSE/MAE, consistent performance across trials
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Conclusion

- Review of the presented methods with regards to the requirements:

Conclusion



Future Work

- Re-evaluation of Neural Networks’ accuracy and performance utilizing bigger
datasets

- Use of new/composite features with bigger correlation with co-location speedup

- Integration of these application models to a real co-scheduler or a simulation tool to
test them in a dynamic co-scheduling scenario
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Thank you for your attention!

Q & A session
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