
Performance Models to
support HPC

Co-Scheduling

Athanasios Tsoukleidis-Karydakis, Efstratios Karapanagiotis,
Nikolaos Triantafyllis, Nectarios Koziris and Georgios Goumas

Performance Models to support HPC Co-Scheduling

What is Co-Scheduling?

 Problem : System Throughput Proposed Solution: Co-Scheduling

● An application typically spreads across twice the number of nodes compared to the classical
scheduling case, but occupies half the number of cores on each node. Thus, two jobs can be allocated
to the same node at the same time

Co-Scheduling

Node 1
Socket 1

Node 1
Socket 2

Node 2
Socket 1

Node 2
Socket 2 Application 1

Application 1

Application 2

Application 2
Node 1
Socket 1

Node 1
Socket 2

Node 2
Socket 1

Node 2
Socket 2

Application 1

Application 1

Application 1

Application 1

Application 2

Application 2

Application 2

Application 2

Performance Models to support HPC Co-Scheduling

What is Co-Scheduling?

 Problem : System Throughput Proposed Solution: Co-Scheduling

● An application typically spreads across twice the number of nodes compared to the classical
scheduling case, but occupies half the number of cores on each node. Thus, two jobs can be allocated
to the same node at the same time

Co-Scheduling

decreased makespan

Performance Models to support HPC Co-Scheduling

What is Co-Scheduling?

resource contention in shared node resources can introduce performance degradation, leading to job slowdowns and
counteracting these benefits

Co-Scheduling

Compact mode:
- Traditional scheduling
- Exclusive node

allocation

Spread mode:
- Urgent computing
- Double node spread
- Half-node occupancy
- Remaining half left idle

Co-location (striped) mode:
- Spread mode execution
- Idle halves occupied by other

jobs

Performance Models to support HPC Co-Scheduling

Heatmap of application co-locations

Heatmaps

- pairwise execution of NAS
benchmarks

- Classes : D, E

- Various number of processes

Performance Models to support HPC Co-Scheduling

Heatmap of application co-locations

Heatmaps

one application
benefits

tremendously from
co-location and the

other stays stationary

Performance Models to support HPC Co-Scheduling

Heatmap of application co-locations

Heatmaps

both applications
exhibit speedups

Performance Models to support HPC Co-Scheduling

Heatmap of application co-locations

Heatmaps

one application
suffers

unacceptable
slowdown

need for insights
into the

applications in
the waiting

queue to make
good pairs

Application
Models

Performance Models to support HPC Co-Scheduling

Goal and Infrastructure

 Goal of this work : Develop models that predict an application’s performance
improvement or degradation when co-located with other applications

● ARIS supercomputer (operated by GRNET, Athens, Greece)
● We utilized the perf Linux tool and mpiP
● Collected Metrics:

○ FLOPS
○ Memory Bandwidth
○ LLC hits/misses
○ MPI stats

■ MPI time
■ MPI time per directive

● NAS Parallel Benchmarks (NPB) and SPEChpc 2021 benchmarks

Goal/Infrastructure

Performance Models to support HPC Co-Scheduling

Model Requirements

Need to have:

○ High accuracy and precision
○ Minimal data use
○ Lightweight profiling

■ few hardware counters
■ few application runs

○ Fast decision

Nice to have:

○ Interpretability
○ Generalizable to other machines

Requirements / Taxonomy

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Tag-based Models
 standalone

characterization per
application

Info passed to
scheduler for

decision-making

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Tag-based Models

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

characterize applications
according to their resource

consumption patterns

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Tag-based Models

Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

each application is labeled
as either co-location

friendly or
co-location unfriendly

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Qualitative

Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

use of labels (e.g.
good, bad, stationary)

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Qualitative

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Empirical

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Qualitative

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Machine Learning
(Classification)

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)
Quantitative

predict the
exact numerical value of the

speedups in the heatmap

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Machine Learning
(Regression)

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical

Resource-centric

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Performance Models to support HPC Co-Scheduling

Resource-centric tag-based models

Goal : Retrieve a standalone resource consumption-based characterization for each
application in the queue

Starting Point: «one can reduce the average slowdown experienced by
co-located applications by simply preventing instances of the same
program from being co-located together» (de Blanche & Lundqvist,

2016)

Extension:
Minimal overlap between spider plots of two applications

Tag-based Models

good
co-location

bad
co-location

Tag

Performance Models to support HPC Co-Scheduling

Resource-centric tag-based models

Static Experiment: (300 applications, 100 experiments)

random co-location

Baseline Case Sophisticated Case
minimize spider plot overlap
greedily

Tag-based Models

Evaluation:

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Performance Models to support HPC Co-Scheduling

Empirical Pairwise Model

Goal : devise an empirical way to qualitatively predict the heatmap of an
application pool

➢ use of categorical labels : good, stationary, bad

Empirical Model

SPEChpc 2021
NAS

SPEChpc 2021 benchmarks :

NAS benchmarks:

Performance Models to support HPC Co-Scheduling

Empirical Pairwise Model

Empirical Model

Performance Models to support HPC Co-Scheduling

Empirical Pairwise Model

Empirical Model

compute-bound application

Performance Models to support HPC Co-Scheduling

Empirical Pairwise Model

Empirical Model

memory-bound application

Performance Models to support HPC Co-Scheduling

Empirical Pairwise Model

Empirical Model

communication-bound application

Performance Models to support HPC Co-Scheduling

Compute-bound applications

Empirical Model

Heavily compute-bound
applications are stationary

Compute-bound with significant
memory access:

- slowdown when co-located
with memory-bound

good neighbors for
other applications

Performance Models to support HPC Co-Scheduling

Memory-bound applications

Empirical Method

- remarkable speedups
- worsened performances

with other memory-bound
applications

bad neighbors for other
applications

Memory-bound with irregular
memory access:

- Low speedups
- slowdowns with

memory-bound
applications

- good neighbours

Performance Models to support HPC Co-Scheduling

Empirical Model

Empirical Method

Performance Models to support HPC Co-Scheduling

Empirical Model - Evaluation

NAS:

★ 83.43% fully correct
★ 7.1% sufficiently correct

SPEChpc 2021:

★ 63.27% fully correct
★ 22.45% sufficiently correct

Empirical Method

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Performance Models to support HPC Co-Scheduling

ML-based Classifiers

➔ Features : the five axes previously presented in the spider plots, normalized
according to system bounds

➔ Dataset : 218 entries in total, with 70% allocated for training and the remaining 30%
for testing

➔ Labels : good, stationary, bad
➔ Methodology: Train many models, with different hyperparameter combinations,

from 7 different types of models, using 5-fold cross validation and keep the model from
each type with the highest mean cross-validation accuracy score

ML Classifiers

Performance Models to support HPC Co-Scheduling

ML-based Classifiers

- Ensemble boosting techniques (e.g. RF, GBM) achieved the best overall results
- Low-complexity models (KNN, GNB) failed to grasp the complex, non-linear relations between

the input features
- Neural Networks (MLP) need to be re-evaluated when bigger datasets are available
- Training and inference times appear to be reasonable

ML Classifiers

Performance Models to support HPC Co-Scheduling

ML-based Classifiers: Combining two models

- Mispredicting many bad co-locations as good (sacrificing precision) can result in a slowdown in the
overall makespan

- Achieving high accuracy and precision for the “good” label concurrently, is a two-criteria
optimization problem that can be solved by utilizing combinations of models as shown in the Pareto
plot

ML Classifiers

Performance Models to support HPC Co-Scheduling

Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

 standalone
characterization per

application

Info passed to
scheduler for

decision-making

 co-location outcomes
for application pairs

(i.e. heatmap prediction)

Performance Models to support HPC Co-Scheduling

ML-based Regression

➔ Features : MPI time, IPC, FLOPS, and Memory Bandwidth (BW)
➔ Dataset : 788 entries in total, with 65% allocated for training and the remaining 35%

for testing
➔ Labels : Numerical value of the speedup for each heatmap cell
➔ Methodology: Train many models, with different hyperparameter combinations,

from 7 different types of models (plus a Dummy Regressor used for comparison
purposes), using 5-fold cross validation and keep the model from each type with the
highest mean cross-validation accuracy score

ML Regression

Performance Models to support HPC Co-Scheduling

ML-based Regression

ML Regression

- moderate correlation of the input features with the dependent variable
(speedup)

- Hint that non-linear relations are at play

Performance Models to support HPC Co-Scheduling

ML-based Regression

ML Regression

- Linear models underperformed due to low feature-speedup correlation
- Ridge best among linear models; SVR and KNN better but KNN overfitted
- Boosting models highest R², lowest RMSE/MAE, consistent performance across trials

Performance Models to support HPC Co-Scheduling

Conclusion

- Review of the presented methods with regards to the requirements:

Minimal Data
use

Lightweight
profiling

Fast Inference High Accuracy
and Precision

Interpretability Generalizable
to other
machines

Tag-based N/A

Empirical

Linear/Simple
ML

Boosting
techniques

Neural
Networks

Needs further
research

Conclusion

Performance Models to support HPC Co-Scheduling

Future Work

- Re-evaluation of Neural Networks’ accuracy and performance utilizing bigger
datasets

- Use of new/composite features with bigger correlation with co-location speedup

- Integration of these application models to a real co-scheduler or a simulation tool to
test them in a dynamic co-scheduling scenario

Future Work

Thank you for your attention!

Q & A session

