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What is Co-Scheduling?

      Problem : System Throughput                                                   Proposed Solution: Co-Scheduling

● An application typically spreads across twice the number of nodes compared to the classical 
scheduling case, but occupies half the number of cores on each node. Thus, two jobs can be allocated 
to the same node at the same time

Co-Scheduling
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What is Co-Scheduling?

      Problem : System Throughput                                                   Proposed Solution: Co-Scheduling

● An application typically spreads across twice the number of nodes compared to the classical 
scheduling case, but occupies half the number of cores on each node. Thus, two jobs can be allocated 
to the same node at the same time

Co-Scheduling

decreased makespan
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What is Co-Scheduling?

resource contention in shared node resources can introduce performance degradation, leading to job slowdowns and 
counteracting these benefits

Co-Scheduling

Compact mode:
- Traditional scheduling 
- Exclusive node 

allocation

Spread mode:
- Urgent computing
- Double node spread
- Half-node occupancy
- Remaining half left idle

Co-location (striped) mode:
- Spread mode execution
- Idle halves occupied by other 

jobs
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Heatmap of application co-locations

Heatmaps

- pairwise execution of NAS 
benchmarks

- Classes : D, E

- Various number of processes



Performance Models to support HPC Co-Scheduling

Heatmap of application co-locations

Heatmaps

one application 
benefits 

tremendously from 
co-location and the 

other stays stationary
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Heatmap of application co-locations

Heatmaps

both applications 
exhibit speedups
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Heatmap of application co-locations

Heatmaps

one application 
suffers 

unacceptable 
slowdown

need for insights 
into the 

applications in 
the waiting 

queue to make 
good pairs

Application 
Models
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Goal and Infrastructure

        Goal of this work : Develop models that predict an application’s performance 
improvement or degradation when co-located with other applications

● ARIS supercomputer (operated by GRNET, Athens, Greece)
● We utilized the perf Linux tool and mpiP
● Collected Metrics:

○ FLOPS
○ Memory Bandwidth
○ LLC hits/misses
○ MPI stats

■ MPI time
■ MPI time per directive

● NAS Parallel Benchmarks (NPB) and SPEChpc 2021 benchmarks

Goal/Infrastructure
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Model Requirements

Need to have: 

○ High accuracy and precision
○ Minimal data use
○ Lightweight profiling

■ few hardware counters
■ few application runs

○ Fast decision

Nice to have:

○ Interpretability
○ Generalizable to other machines

Requirements / Taxonomy
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Taxonomy of Application models

Requirements / Taxonomy

Models

Tag-based Models
     standalone 

characterization per 
application

Info passed to 
scheduler for 

decision-making
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Taxonomy of Application models

Requirements / Taxonomy

Models

Tag-based Models

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

characterize applications 
according to their resource 

consumption patterns
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Taxonomy of Application models

Requirements / Taxonomy

Models

Tag-based Models

Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

each application is labeled 
as either co-location 

friendly or
co-location unfriendly
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Qualitative

Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)

use of labels (e.g. 
good, bad, stationary)
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Qualitative

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)

Empirical
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Qualitative

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)

Machine Learning 
(Classification)
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)
Quantitative

predict the
exact numerical value of the 

speedups in the heatmap
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)

Machine Learning 
(Regression)
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Taxonomy of Application models

Requirements / Taxonomy
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Machine Learning
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     standalone 
characterization per 
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(Regression)

Machine Learning 
(Classification)
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
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Empirical
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Resource-centric

     standalone 
characterization per 

application

Info passed to 
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decision-making
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for application pairs

(i.e. heatmap prediction)
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Resource-centric tag-based models

Goal : Retrieve a standalone resource consumption-based characterization for each 
application in the queue

Starting Point:  «one can reduce the average slowdown experienced by 
co-located applications by simply preventing instances of the same 
program from being co-located together» (de Blanche & Lundqvist, 

2016)

Extension:  
Minimal overlap between spider plots of two applications

Tag-based Models

good 
co-location

bad 
co-location

Tag
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Resource-centric tag-based models

Static Experiment:   (300 applications, 100 experiments)

random co-location

Baseline Case Sophisticated Case
minimize spider plot overlap 
greedily

Tag-based Models

Evaluation:
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)
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Empirical Pairwise Model

Goal : devise an empirical way to qualitatively predict the heatmap of an       
application pool

➢ use of categorical labels : good, stationary, bad

Empirical Model

SPEChpc 2021
NAS

SPEChpc 2021 benchmarks :

NAS benchmarks:
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Empirical Pairwise Model

Empirical Model
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Empirical Pairwise Model

Empirical Model

compute-bound application
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Empirical Pairwise Model

Empirical Model

memory-bound application
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Empirical Pairwise Model

Empirical Model

communication-bound application
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Compute-bound applications

Empirical Model

Heavily compute-bound 
applications are stationary

Compute-bound with significant 
memory access:

- slowdown when co-located 
with memory-bound

good neighbors for 
other applications
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Memory-bound applications

Empirical Method

- remarkable speedups
- worsened performances 

with other memory-bound 
applications

bad neighbors for other 
applications

Memory-bound with irregular 
memory access:

- Low speedups
- slowdowns with 

memory-bound 
applications

- good neighbours
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Empirical Model

Empirical Method
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Empirical Model - Evaluation

NAS:

★ 83.43% fully correct
★ 7.1% sufficiently correct

SPEChpc 2021:

★ 63.27% fully correct
★ 22.45% sufficiently correct

Empirical Method
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)
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ML-based Classifiers

➔ Features : the five axes previously presented in the spider plots, normalized 
according to system bounds

➔ Dataset : 218 entries in total, with 70% allocated for training and the remaining 30% 
for testing

➔ Labels : good, stationary, bad
➔ Methodology: Train many models, with different hyperparameter combinations, 

from 7 different types of models, using 5-fold cross validation and keep the model from 
each type with the highest mean cross-validation accuracy score

ML Classifiers
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ML-based Classifiers

- Ensemble boosting techniques (e.g. RF, GBM) achieved the best overall results 
- Low-complexity models (KNN, GNB) failed to grasp the complex, non-linear relations between 

the input features
- Neural Networks (MLP) need to be re-evaluated when bigger datasets are available
- Training and inference times appear to be reasonable

ML Classifiers
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ML-based Classifiers: Combining two models

- Mispredicting many bad co-locations as good (sacrificing precision) can result in a slowdown in the 
overall makespan

- Achieving high accuracy and precision for the “good” label concurrently, is a two-criteria 
optimization problem that can be solved by utilizing combinations of models as shown in the Pareto 
plot

ML Classifiers
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Taxonomy of Application models

Requirements / Taxonomy

Models

Pairwise Models

Tag-based Models

Quantitative

Qualitative

Machine Learning
(Regression)

Machine Learning
(Classification)

Empirical
Co-location-centric

Resource-centric

     standalone 
characterization per 

application

Info passed to 
scheduler for 

decision-making

 co-location outcomes      
for application pairs

(i.e. heatmap prediction)



Performance Models to support HPC Co-Scheduling

ML-based Regression

➔ Features :  MPI time, IPC, FLOPS, and Memory Bandwidth (BW)
➔ Dataset : 788 entries in total, with 65% allocated for training and the remaining 35% 

for testing
➔ Labels : Numerical value of the speedup for each heatmap cell
➔ Methodology: Train many models, with different hyperparameter combinations, 

from 7 different types of models (plus a Dummy Regressor used for comparison 
purposes), using 5-fold cross validation and keep the model from each type with the 
highest mean cross-validation accuracy score

ML Regression
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ML-based Regression

ML Regression

- moderate correlation of the input features with the dependent variable 
(speedup)

- Hint that non-linear relations are at play
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ML-based Regression

ML Regression

- Linear models underperformed due to low feature-speedup correlation
- Ridge best among linear models; SVR and KNN better but KNN overfitted
- Boosting models highest R², lowest RMSE/MAE, consistent performance across trials
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Conclusion

- Review of the presented methods with regards to the requirements:

Minimal Data 
use

Lightweight 
profiling

Fast Inference High Accuracy 
and Precision

Interpretability Generalizable 
to other 
machines

Tag-based N/A

Empirical

Linear/Simple 
ML

Boosting 
techniques

Neural 
Networks

Needs further 
research

Conclusion
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Future Work

- Re-evaluation of Neural Networks’ accuracy and performance utilizing bigger 
datasets

- Use of new/composite features with bigger correlation with co-location speedup

- Integration of these application models to a real co-scheduler or a simulation tool to 
test them in a dynamic co-scheduling scenario

Future Work



Thank you for your attention!

Q & A session


