Power-Aware Scheduling for Multi-Center HPC Electricity Cost Optimization

Abrar Hossain, Abubeker Abdurahman, Mohammad A. Islam, Kishwar Ahmed

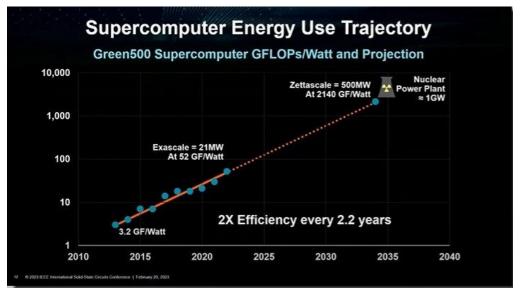
Overview of talk

- The HPC Energy Challenge
- Limitations of Existing Approaches
- Introducing TARDIS: Our Solution
- Evaluation & Key Results
- Conclusion & Contributions
- Q&A

The Growing Energy Demands of HPC

- HPC centers can consume up to 30 MW, costing over \$40M/year.
- Electricity prices vary by 200–300% (peak vs. off-peak).
- Shifting workloads can cut costs by ~40%.

Goal: Reduce electricity costs across HPC centers with minimal performance impact.



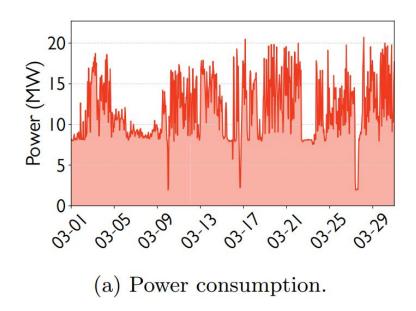
Reference:

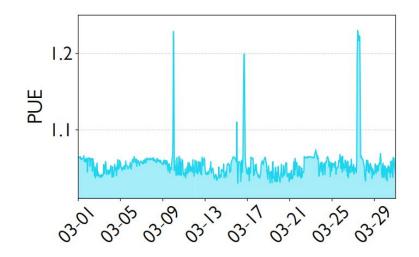
https://www.hpcwire.com/2023/02/21/a-zettascale-computer-today-would-need-21-nuclear-power-plants/#foobox-3/0/AMD-Su-ISSCC-slide-supercom puter-energy-use-trajectory.jpg

Challenge: Fluctuating System-Wide Energy Use

- Power usage ranges from ~2 MW (idle) to over 20 MW (peak).
- While baseline PUE can be good (~1.1), sporadic spikes (>1.2) indicate inefficiencies (e.g., cooling, workload distribution).

Implication: These fluctuations highlight periods of high demand and potential inefficiencies, offering opportunities for optimization.



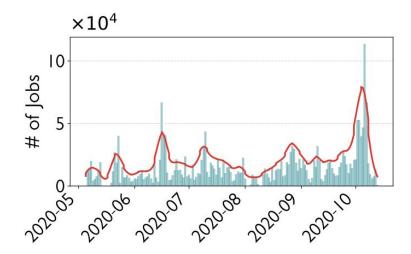


(b) Power usage effectiveness.

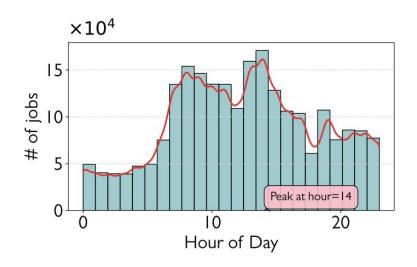
Challenge: Unpredictable Job Submission Patterns

- Job submissions vary daily and hourly, with no clear trend or seasonality.
- Marconi100 data¹ (May–Oct 2020) shows irregular patterns, with occasional midday peaks (~2 PM).

<u>Implication</u>: Schedulers must handle highly variable workload patterns to optimize energy use.



(a) Job submission trends from May - October 2020.

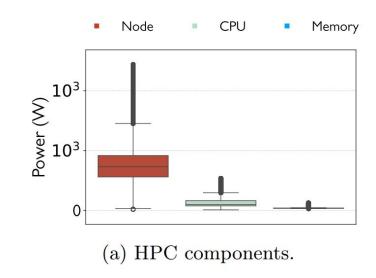


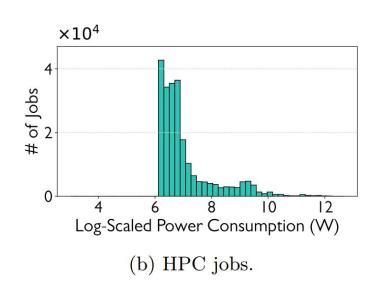
(b) Hourly distribution of job submissions.

Challenge: Diverse Power Needs of Jobs/Components

- Compute nodes (GPU-driven) show high variability and peak power (>2000W) key target for optimization.
- CPUs and memory are more stable, with minimal variation.
- Job-level: Most jobs use low to moderate power (10⁴–10⁶ W), but a long tail of high-power jobs skews energy use.

<u>Implication</u>: Effective energy management requires identifying and handling diverse job power profiles.

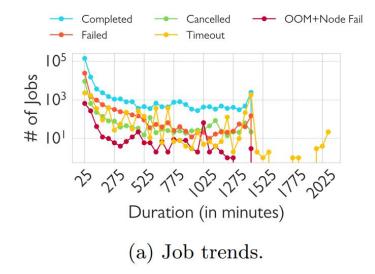




Challenge: Job States & Energy Wastage

- Completed jobs: Consistent duration, efficient power use.
- Failed/Timeout jobs: High variability, often waste energy.

<u>Implication</u>: Dynamic scheduling must balance load, allocate resources smartly, and align provisioning with actual workload to reduce was



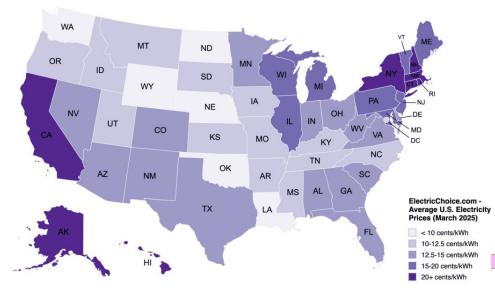


(b) Power consumption.

Why Current Schedulers Fall Short

Limitations of Existing Schedulers

- **Traditional schedulers** (FCFS, backfilling): Focus on throughput, ignore energy costs.
- Power-aware schedulers: Use simplified models or static caps, often neglect dynamic pricing.
- Lack accurate, fine-grained job power prediction
- Focus on temporal optimization (single center); spatial optimization is rare
- Rigid power capping can hurt performance



TARDIS: Power-Aware Scheduling for Multi-Center HPC

A novel scheduler that minimizes electricity costs via temporal and spatial optimization.

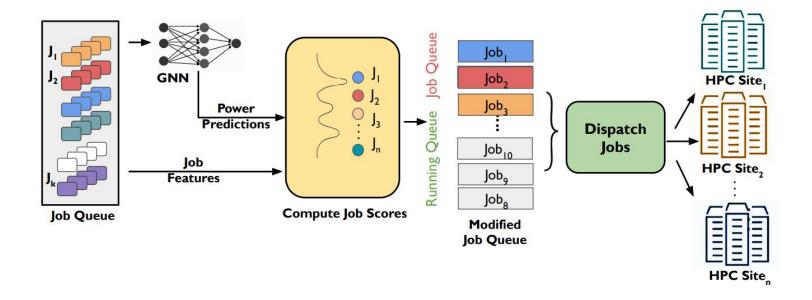
- Power Prediction: Uses a Graph Neural Network (GNN) to estimate job-level power.
- Holistic Scheduling: Allocates jobs across centers based on:
 - Predicted power
 - Dynamic electricity prices
 - System load & job characteristics

TARDIS: System Workflow

- Power Prediction: GNN estimates job-level power.
- 2. **Job Scoring**: Jobs ranked by **cost**, **efficiency**, and **wait time** across sites/times.

$$Score_{j,k,t} = w_c C_{j,k,t} + w_p P_{j,k} + w_u U_{k,t} + w_w W_{j,t}$$

3. **Spatio-Temporal Dispatch**: Assigns jobs to HPC centers to **minimize global cost** while meeting system constraints.



Accurate Power Prediction with GNNs

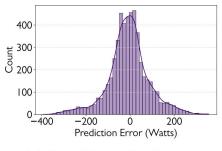
Key Details:

- **Inputs:** Node count, cores/task, memory, runtime, job type, etc.
- **Graph:** Built via k-Nearest Neighbors on job features.
- Architecture: Embedding + GCNConv layers + BatchNorm + ReLU + Residual connections.

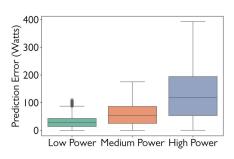
Performance:

- Prediction errors **normally distributed around zero**.
- Median error ranges from ~30W (low power) to 120W (high power) accurate across job sizes.

Component	Power Prediction GNN
Input	$[batch_size, 8]$
Embedding Layer	$Linear(8 \rightarrow 128) + BatchNorm + ReLU + Dropout$
GCN Layer 1	$\operatorname{GCNConv}(128 \to 128) + \operatorname{BatchNorm} + \operatorname{ReLU}$
GCN Layer 2	$\operatorname{GCNConv}(128 \to 128) + \operatorname{BatchNorm} + \operatorname{ReLU} + \operatorname{Residual}$
FC Layer 1	$Linear(128 \rightarrow 64) + ReLU + Dropout$
Output Layer	$Linear(64 \rightarrow 1)$
Trainable Parameters	43,265



(a) Overall Error distribution.



(b) Across three job categories.

Evaluation Methodology

- **Job Trace:** PM100 dataset (~230K jobs)
- GNN Training: 30% of data (temporal split)
- Scheduling Evaluation: Remaining 70% under 3 workload scenarios (Low, Avg, High)

Dynamic Pricing Simulation:

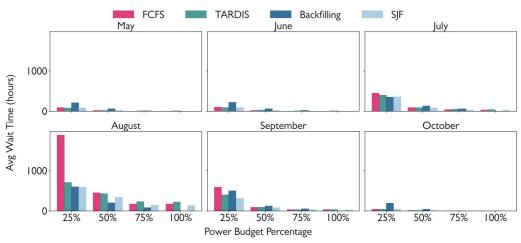
- 3 HPC sites (A, B, C) with different time zones and peak/off-peak rates (3x difference, e.g., \$0.12 / \$0.36 per kWh)
- Power budgets varied from 25% to 100% of historical peak power

Baselines Compared: FCFS, SJF, Backfilling, Random (multi-site)

S S P P

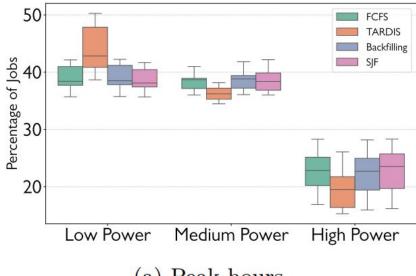
Temporal Optimization: Cost Savings

- **Electricity Cost Reduction:** Up to 18% in temporal-only scenarios
- Consistent Outperformance: Across power budgets and workload months
- Wait Times: Slight, controlled increase under tight power limits
- Trade-off: Effective balance between cost savings and job turnaround

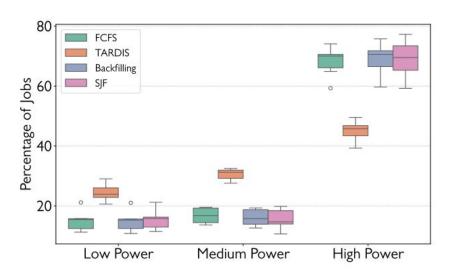


S S P P

- Peak hours: Runs ~18% high-power jobs vs. 22–25% in baselines
- Off-peak hours: Runs ~70% high-power jobs vs. 45–50% in baselines
- Maintains balanced execution of low/medium power jobs throughout



(a) Peak hours.



(b) Off-peak hours.

Mechanism: Strategic Peak Shifting

S P P

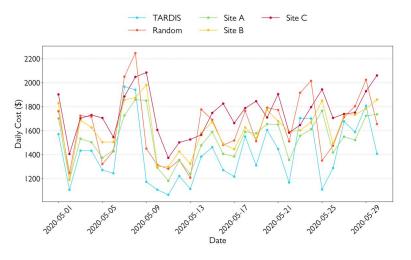
• **TARDIS:** \$100–\$650 daily

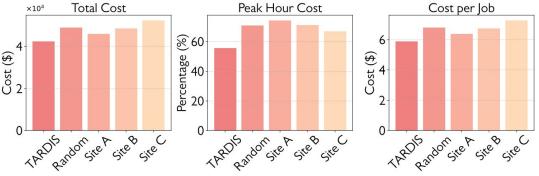
• Single-site schedulers: \$200–\$2,200 daily

• Random assignment: Often > \$1,800 daily

Aggregate Savings vs. Single-Site:

- 10–15% lower total electricity cost
- 55% workload during peak hours (vs. 65–70%)
- Lower cost per job (~\$5.5 vs. \$6.5–\$7.0)





Multi-Site Dynamics & Utilization

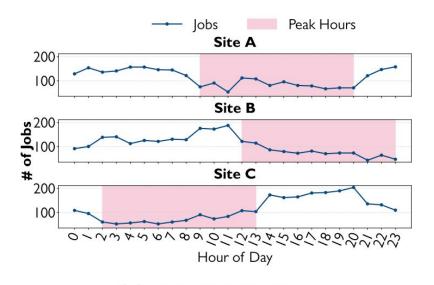
Dynamically shifts jobs across sites to exploit non-overlapping peak hours

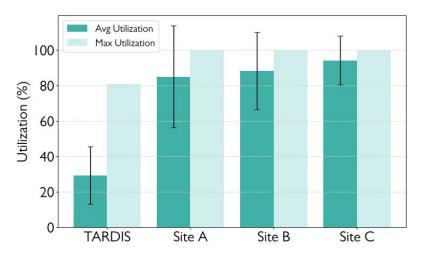
• E.g., Site C picks up load when A & B are in peak, and vice versa

System Utilization:

- Lower average (~30%) vs. single-site (80–95%)
- Similar peak utilization (~80%)

<u>Takeaway</u>: This "deliberate underutilization" allows flexible, cost-aware scheduling without sacrificing throughput





(a) Job distribution.

(b) System utilization.

• **TARDIS**: GNN-based, spatio-temporal, power-aware scheduler

Key Contributions:

- Accurate job-level power prediction via GNN
- Dynamic, price-aware scheduling across time and sites
- Multi-center extension for cost-efficient workload distribution

Results:

- Up to 18% cost savings (temporal), 10–20% (multi-site) vs. baselines
- Achieved via smart job shifting using predicted power + dynamic pricing
- Maintains high throughput with minimal wait-time trade-offs

Thank You! Questions?

Contact: abrar.hossain@utoledo.edu

