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The Growing Energy Demands of HPC
● HPC centers can consume up to 30 MW, costing over $40M/year.

● Electricity prices vary by 200–300% (peak vs. off-peak).

● Shifting workloads can cut costs by ~40%.

Goal: Reduce electricity costs across HPC centers with minimal performance impact.

Reference: 
https://www.hpcwire.com/2023/02/21/a-zettascale-computer-today-would-need-21-nuclear-power-plants/#foobox-3/0/AMD-Su-ISSCC-slide-supercom
puter-energy-use-trajectory.jpg



Challenge: Fluctuating System-Wide Energy Use
■ Power usage ranges from ~2 MW (idle) to over 20 MW (peak).

■ While baseline PUE can be good (~1.1), sporadic spikes (>1.2) indicate inefficiencies (e.g., cooling, workload distribution).

Implication: These fluctuations highlight periods of high demand and potential inefficiencies, offering opportunities for optimization.

1J. Sun, Z. Gao, D. Grant, K. Nawaz, P. Wang, C.-M. Yang, P. Boudreaux, S. Kowalski, and S. Huff, “Energy dataset of Frontier supercomputer for waste heat recovery.” 



Challenge: Unpredictable Job Submission Patterns
● Job submissions vary daily and hourly, with no clear trend or seasonality.

● Marconi100 data1 (May–Oct 2020) shows irregular patterns, with occasional midday peaks (~2 PM).

Implication: Schedulers must handle highly variable workload patterns to optimize energy use.

1F. Antici, M. Seyedkazemi Ardebili, A. Bartolini, and Z. Kiziltan, “PM100: A Job Power Consumption Dataset of a Large-scale Production HPC System,” 



Challenge: Diverse Power Needs of Jobs/Components
● Compute nodes (GPU-driven) show high variability and peak power (>2000W) — key target for optimization.

● CPUs and memory are more stable, with minimal variation.

● Job-level: Most jobs use low to moderate power (10⁴–10⁶ W), but a long tail of high-power jobs skews energy use.

Implication: Effective energy management requires identifying and handling diverse job power profiles.



Challenge: Job States & Energy Wastage
● Completed jobs: Consistent duration, efficient power use.

● Failed/Timeout jobs: High variability, often waste energy.

Implication: Dynamic scheduling must balance load, allocate resources smartly, and align provisioning with actual workload to reduce waste.



Why Current Schedulers Fall Short
Limitations of Existing Schedulers

● Traditional schedulers (FCFS, backfilling): Focus on throughput, ignore energy costs.

● Power-aware schedulers: Use simplified models or static caps, often neglect dynamic pricing.

● Lack accurate, fine-grained job power prediction

● Focus on temporal optimization (single center); spatial optimization is rare

● Rigid power capping can hurt performance



TARDIS: Power-Aware Scheduling for Multi-Center HPC

 A novel scheduler that minimizes electricity costs via temporal and spatial optimization.

● Power Prediction: Uses a Graph Neural Network (GNN) to estimate job-level power.

● Holistic Scheduling: Allocates jobs across centers based on:
 • Predicted power
 • Dynamic electricity prices
 • System load & job characteristics



TARDIS: System Workflow
1. Power Prediction: GNN estimates job-level power.

2. Job Scoring: Jobs ranked by cost, efficiency, and wait time across sites/times.

3. Spatio-Temporal Dispatch: Assigns jobs to HPC centers to minimize global cost while meeting system constraints.



Accurate Power Prediction with GNNs
Key Details:

● Inputs: Node count, cores/task, memory, runtime, job type, etc.

● Graph: Built via k-Nearest Neighbors on job features.

● Architecture: Embedding + GCNConv layers + BatchNorm + ReLU + Residual connections.

Performance:

● Prediction errors normally distributed around zero.

● Median error ranges from ~30W (low power) to 120W (high power) — accurate across job sizes.



Evaluation Methodology

● Job Trace: PM100 dataset (~230K jobs)

● GNN Training: 30% of data (temporal split)

● Scheduling Evaluation: Remaining 70% under 3 workload scenarios (Low, Avg, High)

Dynamic Pricing Simulation:

● 3 HPC sites (A, B, C) with different time zones and peak/off-peak rates (3x difference, e.g., $0.12 / $0.36 per kWh)

● Power budgets varied from 25% to 100% of historical peak power

Baselines Compared: FCFS, SJF, Backfilling, Random (multi-site)



Temporal Optimization: Cost Savings
● Electricity Cost Reduction: Up to 18% in temporal-only scenarios

● Consistent Outperformance: Across power budgets and workload months

● Wait Times: Slight, controlled increase under tight power limits

● Trade-off: Effective balance between cost savings and job turnaround



Multi-Site Optimization: Enhanced Savings
● Peak hours: Runs ~18% high-power jobs vs. 22–25% in baselines

● Off-peak hours: Runs ~70% high-power jobs vs. 45–50% in baselines

● Maintains balanced execution of low/medium power jobs throughout



Mechanism: Strategic Peak Shifting

● TARDIS: $100–$650 daily

● Single-site schedulers: $200–$2,200 daily

● Random assignment: Often > $1,800 daily

Aggregate Savings vs. Single-Site:

● 10–15% lower total electricity cost

● 55% workload during peak hours (vs. 65–70%)

● Lower cost per job (~$5.5 vs. $6.5–$7.0)



Multi-Site Dynamics & Utilization
Dynamically shifts jobs across sites to exploit non-overlapping peak hours

 • E.g., Site C picks up load when A & B are in peak, and vice versa

System Utilization:
 • Lower average (~30%) vs. single-site (80–95%)

 • Similar peak utilization (~80%)

            Takeaway: This "deliberate underutilization" allows flexible, cost-aware scheduling without sacrificing throughput



Contributions & Conclusion

● TARDIS: GNN-based, spatio-temporal, power-aware scheduler

Key Contributions:

● Accurate job-level power prediction via GNN

● Dynamic, price-aware scheduling across time and sites

● Multi-center extension for cost-efficient workload distribution

Results:

● Up to 18% cost savings (temporal), 10–20% (multi-site) vs. baselines

● Achieved via smart job shifting using predicted power + dynamic pricing

● Maintains high throughput with minimal wait-time trade-offs



Thank You! 
Questions?

Contact: abrar.hossain@utoledo.edu


