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The Growing Energy Demands of HPC

e  HPC centers can consume up to 30 MW, costing over $40M/year.
e  Electricity prices vary by 200-300% (peak vs. off-peak).
e  Shifting workloads can cut costs by ~40%.

Goal: Reduce electricity costs across HPC centers with minimal performance impact.
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Challenge: Fluctuating System-Wide Energy Use

m  Power usage ranges from ~2 MW (idle) to over 20 MW (peak).

m  While baseline PUE can be good (~1.1), sporadic spikes (>1.2) indicate inefficiencies (e.g., cooling, workload distribution).

Implication: These fluctuations highlight periods of high demand and potential inefficiencies, offering opportunities for optimization.
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(a) Power consumption. (b) Power usage effectiveness.

'J. Sun, Z. Gao, D. Grant, K. Nawaz, P. Wang, C.-M. Yang, P. Boudreaux, S. Kowalski, and S. Huff, “Energy dataset of Frontier supercomputer for waste heat recovery.”
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Challenge: Unpredictable Job Submission Patterns

e Job submissions vary daily and hourly, with no clear trend or seasonality.
e  Marconi100 data' (May—Oct 2020) shows irregular patterns, with occasional midday peaks (~2 PM).

Implication: Schedulers must handle highly variable workload patterns to optimize energy use.
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'F. Antici, M. Seyedkazemi Ardebili, A. Bartolini, and Z. Kiziltan, “PM100: A Job Power Consumption Dataset of a Large-scale Production HPC System,”
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Challenge: Diverse Power Needs of Jobs/Components

e  Compute nodes (GPU-driven) show high variability and peak power (>2000W) — key target for optimization.
e CPUs and memory are more stable, with minimal variation.
e Job-level: Most jobs use low to moderate power (10*-10° W), but a long tail of high-power jobs skews energy use.

Implication: Effective energy management requires identifying and handling diverse job power profiles.
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(a) HPC components. (b) HPC jobs.
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Challenge: Job States & Energy Wastage

® Completed jobs: Consistent duration, efficient power use.

® Failed/Timeout jobs: High variability, often waste energy.

Implication: Dynamic scheduling must balance load, allocate resources smartly, and align provisioning with actual workload to reduce was
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Why Current Schedulers Fall Short

Limitations of Existing Schedulers

e Traditional schedulers (FCFS, backfilling): Focus on throughput, ignore energy costs.

e Power-aware schedulers: Use simplified models or static caps, often neglect dynamic pricing.
e Lack accurate, fine-grained job power prediction

e  Focus on temporal optimization (single center); spatial optimization is rare

e Rigid power capping can hurt performance

ElectricChoice.com -
Average U.S. Electricity
Prices (March 2025)
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TARDIS: Power-Aware Scheduling for Multi-Center HPC

A novel scheduler that minimizes electricity costs via temporal and spatial optimization.

e  Power Prediction: Uses a Graph Neural Network (GNN) to estimate job-level power. POLICE gt BOX

|CE e 8K

e Holistic Scheduling: Allocates jobs across centers based on: . IH I l
* Predicted power

* Dynamic electricity prices
» System load & job characteristics
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TARDIS: System Workflow

1.  Power Prediction: GNN estimates job-level power.
2.  Job Scoring: Jobs ranked by cost, efficiency, and wait time across sites/times.

Scorej ki = wWeCj kit + WpPj . +wy Ut + wy, Wiy

3. Spatio-Temporal Dispatch: Assigns jobs to HPC centers to minimize global cost while meeting system constraints.
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Accurate Power Prediction with GNNSs

Key Details:

e Inputs: Node count, cores/task, memory, runtime, job type, etc.

e  Graph: Built via k-Nearest Neighbors on job features.

e Architecture: Embedding + GCNConv layers + BatchNorm + ReLU + Residual connections.

Performance:

e  Prediction errors normally distributed around zero.

e  Median error ranges from ~30W (low power) to 120W (high power) — accurate across job sizes.

Component

Power Prediction GNN

Input

[batch _size, 8]

Embedding Layer

Linear(8 — 128) + BatchNorm + ReLU -+ Dropout

GCN Layer 1 GCNConv (128 — 128) + BatchNorm + ReLU
GCN Layer 2 GCNConv(128 — 128) + BatchNorm + ReLU + Residual
FC Layer 1 Linear(128 — 64) + ReLU + Dropout

Output Layer

Linear(64 — 1)

Trainable Parameters

43,265

Count
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(a) Overall Error distribution.

Prediction Error (Watts)

VOV On-—

N
8
|
|

w
o
o

N
o
o

Pl —
= T

e e SRS

o

Low Power Medium Power High Power

(b) Across three job categories.



Evaluation Methodology

e Job Trace: PM100 dataset (~230K jobs)
e  GNN Training: 30% of data (temporal split)

e  Scheduling Evaluation: Remaining 70% under 3 workload scenarios (Low, Avg, High)

Dynamic Pricing Simulation:

3 HPC sites (A, B, C) with different time zones and peak/off-peak rates (3x difference, e.g., $0.12 / $0.36 per kWh)

e  Power budgets varied from 25% to 100% of historical peak power

Baselines Compared: FCFS, SJF, Backfilling, Random (multi-site)
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Temporal Optimization: Cost Savings

Total Cost ($)
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Electricity Cost Reduction: Up to 18% in temporal-only scenarios
Consistent Outperformance: Across power budgets and workload months
Wait Times: Slight, controlled increase under tight power limits
Trade-off: Effective balance between cost savings and job turnaround
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Multi-Site Optimization: Enhanced Savings

®  Peak hours: Runs ~18% high-power jobs vs. 22—-25% in baselines
®  Off-peak hours: Runs ~70% high-power jobs vs. 45-50% in baselines

® Maintains balanced execution of low/medium power jobs throughout
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Mechanism: Strategic Peak Shifting :
Aggregate Savings vs. Single-Site: g
e TARDIS: $100-$650 daily -
e  10-15% lower total electricity cost
e Single-site schedulers: $200-$2,200 daily )
e  55% workload during peak hours (vs. 65-70%)
e Random assignment: Often > $1,800 daily _
e  Lower cost per job (~$5.5 vs. $6.5-$7.0)
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Multi-Site Dynamics & Ultilization .

Dynamically shifts jobs across sites to exploit non-overlapping peak hours
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* E.g., Site C picks up load when A & B are in peak, and vice versa

System Utilization:
* Lower average (~30%) vs. single-site (80—-95%)

 Similar peak utilization (~80%)

Takeaway: This "deliberate underutilization™ allows flexible, cost-aware scheduling without sacrificing throughput
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Contributions & Conclusion

e TARDIS: GNN-based, spatio-temporal, power-aware scheduler

Key Contributions:
e Accurate job-level power prediction via GNN
e Dynamic, price-aware scheduling across time and sites

° Multi-center extension for cost-efficient workload distribution

Results:
e Up to 18% cost savings (temporal), 10-20% (multi-site) vs. baselines
e  Achieved via smart job shifting using predicted power + dynamic pricing

e  Maintains high throughput with minimal wait-time trade-offs
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Thank You!
Questions?

Contact: abrar.hossain@utoledo.edu

ﬁ‘ii‘)‘ifji‘“ﬁé adWS A

UNIVERSITY OF

TEXAS

ARLINGTON

VOV On-—



