

Job Grouping Based Intelligent Resource Prediction Framework

BY BESTE OZTOP¹, BENJAMIN SCHWALLER², VITUS J. LEUNG², JIM BRANDT², BRIAN KULIS¹, MANUEL EGELE¹, AYSE COSKUN¹

¹Boston University; ²Sandia National Laboratories

Job Scheduling Strategies for Parallel Processing (JSSPP) June 3, 2025

Introduction

```
#!/bin/bash -1
#$ -P peaclab-mon
#$ -N my job name
#$ -o ./my job output.out
#$ -1 mem per core=18G
#$ -pe omp 28
#$ -1 gpu c=6.0
#$ -1 gpus=2
#$ -1 h rt=4:00:00
python my python code.py
```


- Allocates resources based on user demand.
- Resources are not released until the job is completed.

Underprediction

Early job terminations

Reduced QoS of users

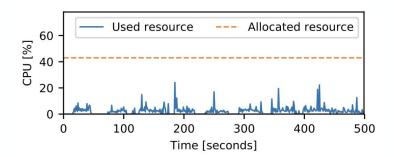
Overprediction

Job backfilling inefficiencies

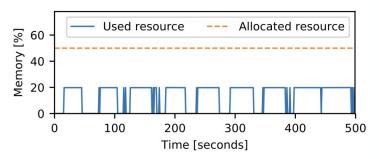
Increased wait time

Valuable computing and memory resources sitting idle

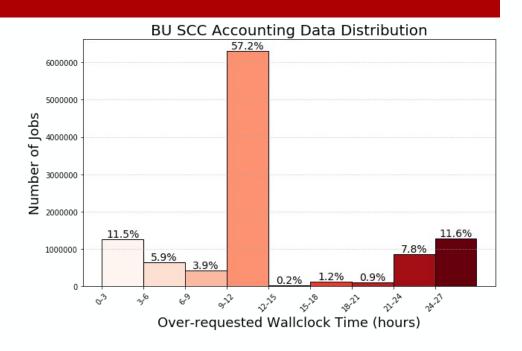
Introduction



(a) Comparison of CPU allocation and usage



(b) Comparison of memory allocation and usage [Thonglek et al., CLUSTER'19]



Users tend to request more resources than they need!

State-of-the-Art of Resource Prediction

Maximum memory size and execution time prediction with regression models

[Tanash et al., PEARC'21]

Predicting CPU and memory requirements of batch jobs with an LSTM model

[Thonglek et al., CLUSTER'19]

Using an XGBoost regressor for execution time prediction

[Menear et al., PEARC'23]

Utilizing Tobit Model for eliminating execution time underprediction

[Fan et al., CLUSTER'17]

State-of-the-Art of Resource Prediction

laximum memory size and

Predicting CPU and memory

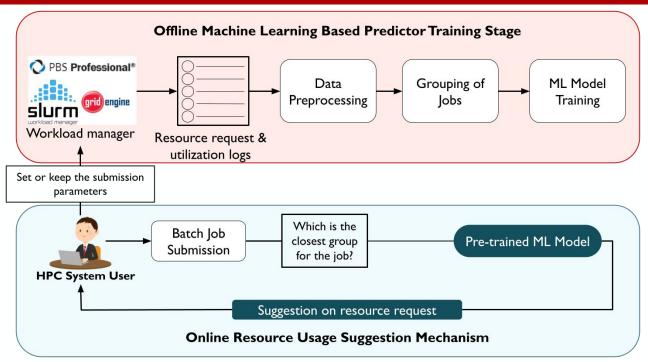
Limitations:

- Not analyzing overpredictions
- Not addressing underpredictions
- Using resource utilization as an input feature
- Not looking at the similar batch jobs for prediction

execution time prediction
[Menear et al., PEARC'23]

underprediction
[Fan et al., CLUSTER'17]

Proposed Framework



Goal: Provide a job grouping-based intelligent framework for HPC batch job resource provisioning to reduce overpredictions and minimize underpredictions.

Framework Design

Offline Training Stage Choose the target feature Filter successful K-means Train jobs Historical cluster training individual workload dataset models Label encode manager outputs features **XGBoost** User Name Random Forest Job Name Queue Name

Input features: Available submission parameters

Target feature: Execution time, maximum memory size or number of processors

Handling Underpredictions

Problem: Using regression models alone result in 40 to 50% underprediction ratio, which will lead to early job terminations.

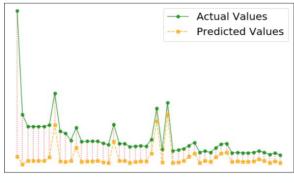
→ We use data-driven mechanisms to eliminate the early job terminations in our recommendation framework.

Handling Underpredictions

Calculating buffer values per cluster in the offline training stage

☐: Batch job log outputs **Training set** Training individual models Validation set Making resource predictions

Find 2σ value of the underprediction amounts



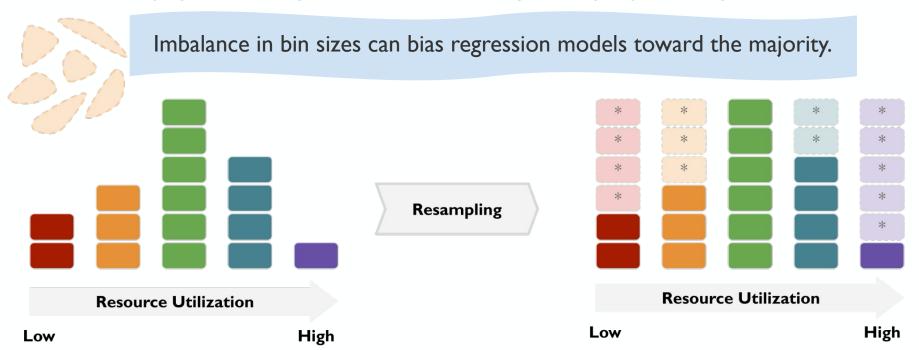
 σ = standard deviation

Testing Stage

Add **buffer** value to model predictions

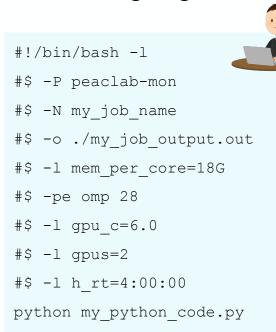
Handling Underpredictions

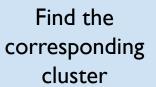
2. Changing the training dataset distribution by resampling less frequent jobs



Framework Design

2. Testing Stage





Use that cluster's model to make predictions

△ Altair | PBS Works*

Real world HPC system resource requests and utilization

Experimental Procedure

Dataset Name	Duration	Number of Jobs	
NREL Eagle	November 2018 to February 2023	7,388,190	
Fugaku	April 2024	338,79	
M100	December 2021	79,173	
BU SCC	January-December 2023	13,244,729	
Sandia	May-October 2024	313,615	

Input features: Available submission parameters for each dataset

Target features: Execution time, maximum memory size or number of processors

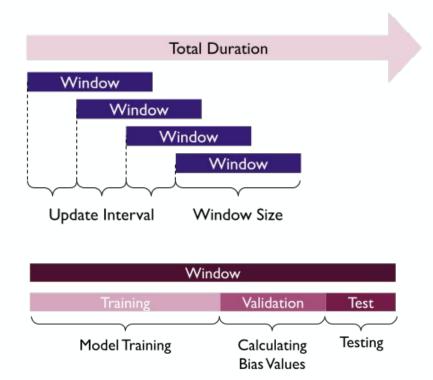
Experimental Procedure

Prediction Models

Comparison between 10 models

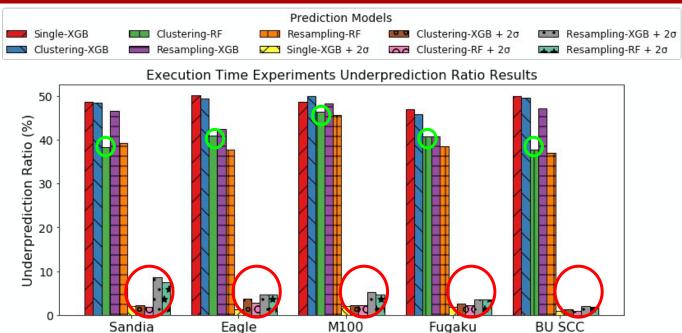
- Underprediction Ratio
- Overestimation Factor

Train-Test Time Duration Experiment



Observing the underprediction in execution time prediction

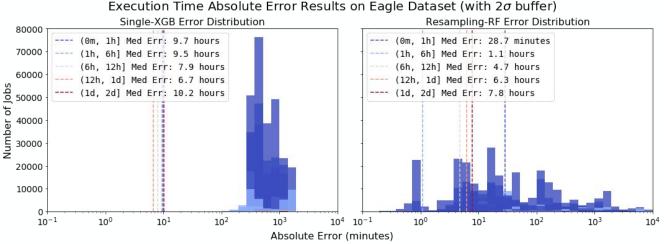
Dataset	Window Size	Update Interval
NREL Eagle	I month	I month
Fugaku	3 days	3 days
M100	3 days	3 days
BU SCC	2 months	I month
Sandia	I week	I week



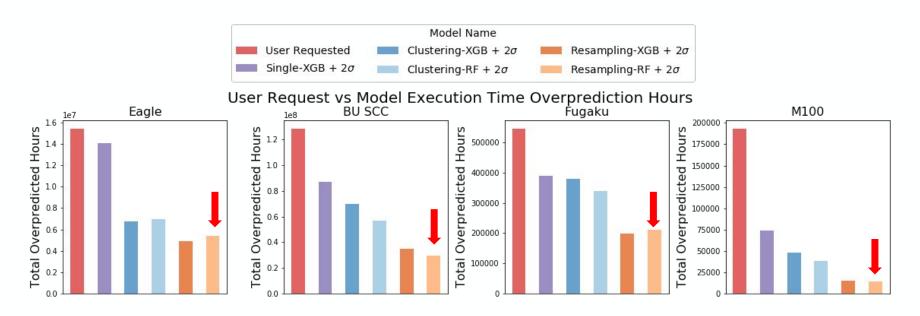
Clustering method with Random Forest regression model improves and adding buffer value further reduces the underprediction rate.

Method	Sandia	Eagle	M100	Fugaku	BU SCC
Single-XGB	48.59%	50.16%	48.59%	46.91%	49.87%
Resampling-RF $+2\sigma$	7.39%	4.65%	4.75%	3.57%	1.82%

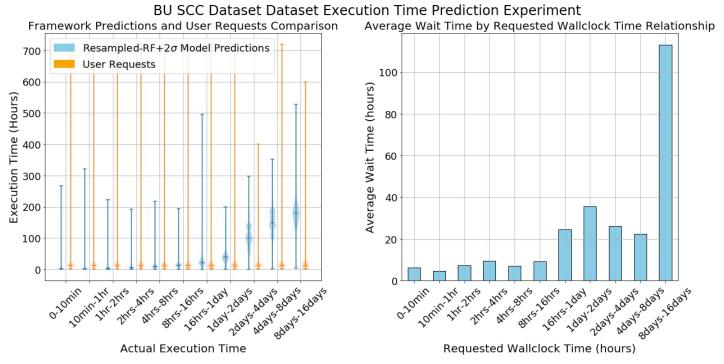
Our framework offers lower underestimation rate.



Resampling strategy reduces the mean absolute error in execution time prediction compared to the baseline method.



→ While reducing the underpredictions, we also limit the overpredictions of execution time.



→ We can reduce the job wait time compared to the users' over requests in wallclock time.

Predicting Other Resource Types

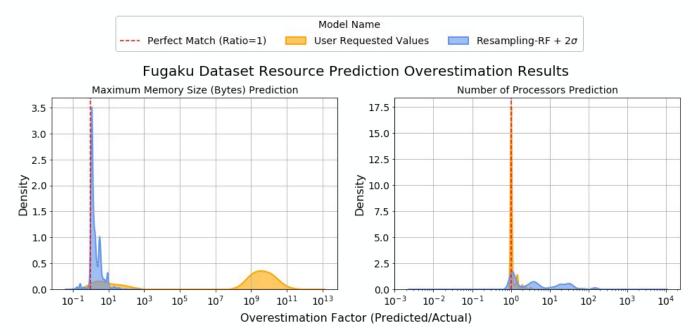
CPU Prediction: Number of processors required for the batch job.

Maximum Memory Size Prediction: max_rss value from the workload manager.

Dataset	Fugaku		Sandia	
Predicted Resource Type	CPU	Max Memory	CPU	Max Memory
Single-XGB	25.78%	49.87%	37.42%	48.31%
Resampling-RF + 2σ	2.41%	6.70%	10.32%	9.74%

→ Our framework offers lower underestimation rates for other resource types' predictions as well.

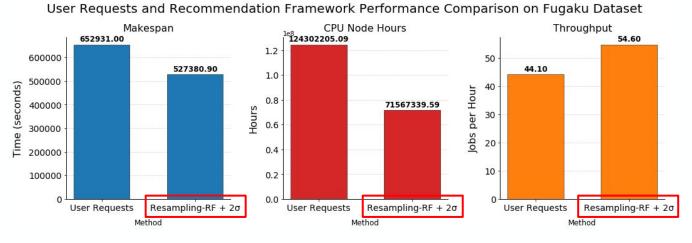
Predicting Other Resource Types



- \rightarrow Fugaku users' overestimation of maximum memory size reaches up to 10^{11} .
- → Utilizing an intelligent resource recommender can help reducing the idle memory size.

Future Work

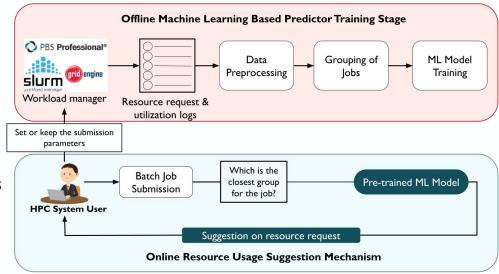
Using workload manager simulators to assess the framework predictions



Simulation Results from CQSim [Yang et al., SC'13]

Deploying the framework on a real large scale computing system

- Intelligent, data-driven models help with
 - Minimizing under- and over-estimation of batch job resources
 - Improving efficiency and resource utilization in large-scale computing environments
- Our recommendation framework supports HPC users to make informed decisions for job submissions



CONCLUDING REMARKS

For questions and feedback: boztop@bu.edu