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Introduction

#!/bin/bash -l

#$ -P peaclab-mon

#$ -N my_job_name

#$ -o ./my_job_output.out

#$ -l mem_per_core=18G

#$ -pe omp 28

#$ -l gpu_c=6.0

#$ -l gpus=2

#$ -l h_rt=4:00:00

python my_python_code.py

● Allocates resources based on user demand.
● Resources are not released until the job is completed.

Underprediction

Early job terminations

Reduced QoS of users

Overprediction

Job backfilling inefficiencies

Increased wait time

Valuable computing and memory 
resources sitting idle
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Introduction

[Thonglek et al., CLUSTER’19]

Users tend to request more resources than 
they need!
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https://ieeexplore.ieee.org/document/8891022


State-of-the-Art of Resource Prediction

Maximum memory size and 
execution time prediction with 

regression models
[Tanash et al., PEARC’21]

Predicting CPU and memory 
requirements of batch jobs with 

an LSTM model
[Thonglek et al., CLUSTER’19]

Using an XGBoost regressor for 
execution time prediction 

[Menear et al.,  PEARC’23]

Utilizing Tobit Model for 
eliminating execution time 

underprediction
[Fan et al., CLUSTER’17]
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https://dl.acm.org/doi/pdf/10.1145/3437359.3465574
https://ieeexplore.ieee.org/document/8891022
https://dl.acm.org/doi/pdf/10.1145/3569951.3593598
https://ieeexplore.ieee.org/document/8891022
https://ieeexplore.ieee.org/document/8048966
https://ieeexplore.ieee.org/document/8891022
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Limitations:
● Not analyzing overpredictions
● Not addressing underpredictions
● Using resource utilization as an input feature
● Not looking at the similar batch jobs for prediction

https://dl.acm.org/doi/pdf/10.1145/3437359.3465574
https://ieeexplore.ieee.org/document/8891022
https://dl.acm.org/doi/pdf/10.1145/3569951.3593598
https://ieeexplore.ieee.org/document/8891022
https://ieeexplore.ieee.org/document/8048966
https://ieeexplore.ieee.org/document/8891022


Goal: Provide a job grouping-based intelligent framework for HPC batch job resource 
provisioning to reduce overpredictions and minimize underpredictions.

Proposed Framework

6



Historical 
workload 

manager outputs

1. Offline Training Stage

Framework Design

Filter successful 
jobs 

Label encode 
features

● User Name
● Job Name
● Queue Name

K-means 
cluster training 

dataset

Train 
individual 
models

● XGBoost
● Random Forest

Input features: Available submission parameters
Target feature: Execution time, maximum memory size or number of processors 

Choose the target 
feature
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Problem: Using regression models alone result in 40 to 50% underprediction ratio, 
which will lead to early job terminations.

Handling Underpredictions
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➔ We use data-driven mechanisms to eliminate the early job 
terminations in our recommendation framework.



Handling Underpredictions

1. Calculating buffer values per cluster in the offline training stage 

9

Testing Stage Add buffer value to model predictions

σ = standard deviation



Handling Underpredictions

2. Changing the training dataset distribution by resampling less frequent jobs
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Imbalance in bin sizes can bias regression models toward the majority.



2. Testing Stage

Framework Design

Find the 
corresponding 

cluster 

Use that cluster’s 
model to make 

predictions 

Real world HPC system resource requests and utilization

#!/bin/bash -l

#$ -P peaclab-mon

#$ -N my_job_name

#$ -o ./my_job_output.out

#$ -l mem_per_core=18G

#$ -pe omp 28

#$ -l gpu_c=6.0

#$ -l gpus=2

#$ -l h_rt=4:00:00

python my_python_code.py
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Input features: Available submission parameters for each dataset
Target features: Execution time, maximum memory size or number of processors 

Experimental Procedure

NREL Eagle November 2018 to February 2023 7,388,190

Fugaku April 2024 338,79

M100 December 2021 79,173

BU SCC January-December 2023 13,244,729

Sandia May-October 2024 313,615

Dataset Name Duration Number of Jobs
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Experimental Procedure

Baseline Method: XGBoost Regression Model [Menear et al.,  PEARC’23]

Clustering Similar Jobs (Multiple Model Training)

Resampling Train Data for Each Cluster

Adding 2σ
XGB RF

Prediction Models

Comparison between 10 models
● Underprediction Ratio
● Overestimation Factor

[Menear et al.,  PEARC’23]
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https://dl.acm.org/doi/pdf/10.1145/3569951.3593598
https://dl.acm.org/doi/pdf/10.1145/3569951.3593598


Train-Test Time Duration Experiment

Dataset Window 
Size

Update 
Interval

NREL Eagle 1 month 1 month

Fugaku 3 days 3 days

M100 3 days 3 days

BU SCC 2 months 1 month

Sandia 1 week 1 week

Observing the underprediction in 
execution time prediction
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Execution Time Prediction Experiment
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➔ Clustering method with Random Forest regression model improves and 
adding buffer value further reduces the underprediction rate.



Execution Time Prediction Experiment

➔ Resampling strategy reduces the mean absolute error in execution time prediction 
compared to the baseline method.

Our framework offers lower 
underestimation rate. 
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Execution Time Prediction Experiment

➔ While reducing the underpredictions, we also limit the overpredictions of execution time.
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Execution Time Prediction Experiment

➔ We can reduce the job wait time compared to the users’ over requests in wallclock time.
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CPU Prediction: Number of processors required for the batch job. 
Maximum Memory Size Prediction: max_rss value from the workload manager.

Predicting Other Resource Types

➔ Our framework offers lower underestimation rates for other resource types’ 
predictions as well.

Dataset Fugaku Sandia

Predicted Resource Type CPU Max Memory CPU Max Memory

Single-XGB 25.78% 49.87% 37.42% 48.31%

Resampling-RF + 2σ 2.41% 6.70% 10.32% 9.74%
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Predicting Other Resource Types

➔ Fugaku users’ overestimation of maximum memory size reaches up to 1011.
➔ Utilizing an intelligent resource recommender can help reducing the idle memory size. 

20



● Using workload manager simulators to assess the framework predictions

● Deploying the framework on a real large scale computing system 

Future Work

Simulation Results from CQSim [Yang et al., SC’13]
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http://www.cs.iit.edu/~lan/publications/sc13_final.pdf


CONCLUDING REMARKS

● Intelligent, data-driven models help with 
○ Minimizing under- and over-estimation of 

batch job resources
○ Improving efficiency and resource utilization 

in large-scale computing environments
● Our recommendation framework supports 

HPC users to make informed decisions for job 
submissions

For questions and feedback: boztop@bu.edu
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