ISELISE

A tool to support algorithmic design for
HPC co-scheduling

O O O O National Technical University of Athens

Efstratios Karapanagiotis, Nikolaos Triantafyllis,

Athanasios Tsoukleidis-Karydakis, Georgios Goumas, 8%@ SL b
Nectarios Koziris o a

Introduction

e Efficient Lightweight Scheduling Estimator
e A framework for fast prototyping and evaluation of scheduling and
co-scheduling algorithms for HPC systems

Testing in a real HPC cluster is fime-consuming and expensive
Access to large scale resources is not straightforward
Challenges in extending a real scheduler

No administrative privileges for such changes

e Sharing node resources of memory-intensive jobs can boost performance
e Through it, potential gains in system throughput and reduced job wait times

ELISE: A tool to support algorithmic design for HPC co-scheduling Introduction

ELiSE: Features

Number of finished jobs per scheduler
Input 0

e A graphical, web and command-line ISELISE

interface mera—

Schematic
[

Scheduters @~

PS > python .\elise.py $env:ELiSE_CONFIGS p intelmpi
Overall Progress: 100.00%
Simulation ID Input ID Scheduler ID | Scheduler Name Real Time Simulated Time Time Rat3
2] Q @ | EASY Scheduler 0:00:13.584444 | 18 days_11:11:45
1] 1 FIFO Scheduler 0:00:09.161662 19 days_17:58:50
PS >

1 IPDPS

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Features

ELiSE: Features

e Workload generation with in-built or
custom algorithms

ELISE: A tool to support algorithmic design for HPC co-scheduling

Inputs

Logs configuration
Source
Source Input
Machine

Suite

Heatmap configuration

Custom Heatmap

Workload configuration
Generator

Generator Input

® Enable distribution
Distribution

Distribution Input

Cluster
Nodes

Socket configuration

ELiSE: Features

X
Database v
Upload file
Random v
1
Constant WV
1
1
[2,2]
Save Input

ELiSE: Features

Schedulers’ Hierarchy X

e Bundled schedulers or user-defined

Schedulers % X
Defaults v | EASY Scheduler v
Default ® Backfilling Compact fallback

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Features

ELiSE: Features

Time Ratio
(Simulated Days /
1 real hour)

Scheduler Simulated

1D Scheduler Name | Real Time Time

9 days

0 0 (0] FCFS Scheduler 0:00:03.137 16:35:05

11121.375

P Repor.l.s qnd diogrqms for Scheduling 1 0 1 EASY Scheduler = 0:00:05.137 9 days 1:46:45 6359.114
evaluation:
o General simulation , rea | fime 2 0 2 | Filler Co-Scheduler | 0:00:04.582 18233?/551 6701.856
reports

Job Submit = 2 = Number of Allocated Average CPU Used Requested Number of Reque
Number Time L il el Processors Time Used Memory Processors Td
40 0.000 34845 .000 |4540.000 64 64 6356
41 0.000 34845 .000 |3470.000 32 32 4858
42 0.000 12165 .000 |2630.000 32 32 3682
43 0.000 37275 .000 |3580.000 128 121 5012
44 0.000 | 37275.000 |3470.000 32 32 4858
45 0.000 38315.000 |2630.000 32 32 3682

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Features

ELiSE: Features

EASY Scheduler

Cores

e Reports and diagrams for scheduling
evqlunion: e 2 By Vs, 1%5-‘5@ S, 1%"3, '1 %2, VI by, " ., Ids*'ez_.

%>

Time

Filler Co-Scheduler

o Gantt diagrams

Cores

o,
"0
00

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Features

ELiSE: Features

Number of finished jobs per scheduler
Input O

1000 - FIFO Scheduler g,
» '// EASY Scheduler(;,
a /' Filler Co-Scheduler ;)
.S, 800 T
© -
1]
< =i
@ 600
c
&
Py
S 400
o
]
2
£ 200
3
H

0

e Reports and diagrams for scheduling

<., <., 0. 9. 8. & , 6.
&4 e -0, d, "3 oy O “d, "
0 Ty, Regy iy, gy gy g, iz, g,

evaluation: e

Cluster utilization per scheduler

InDUt 0 FIFO Scheduler g,
o) EASY Scheduler;)
2 Filler Co-Scheduler(;)
8200
°
Q
o e 2150
o Throughput, Waiting Queue and
ope . o
System Utilization g
2
0
2 :0093,153 %, 2%y, 7%, :de}'s/ j%*s, G%J's, %y, deys/ %y
3.0 Y5, Y05 %25, g, S0g, Zitg, O3,
L3y 20> gy oy O3y oy Swy Sigs
Time

ELiSE: A tool to support algorithmic design for HPC co-scheduling ELISE: Features —|IPOPS

ELiSE: Features

& v = 1B
7 B+ X OO > mCo» Mo
e ~ | Modfied <Figure size 12006600 with 0 Aves>
work_100_174784, 2dag0 budget_co-schedulerandom_ranks_co-schedulerffo_filler_scheduler bulk_co-scheduler util_co-scheduler_3 filer_co-scheduler
2 24390
2420
24000
dago
2420
24390
Zhago
2hago
hago
dago
dago
2420
24000
2420
werking dic 13dag0
werklosd templtes dmoago
workloads
——
T0sSpeedupsison
100cTimes_ais <.
100xTimes sision 12dag0
aedis heatmapi sdago
Tecks prd) ol budget_co'scheduler random_ranks_co-scheduler fifo_fller_schedu bulk_co-scheduler heduler_3 co-scheduler

1461 [af_nean

e SRS i oma | Makesn Hipestn e i e et s W i e
0 budoet coschedule asascer 11000000 15236579649 1123333 1128000 115095 1110004 00 osan
1 raadom e o 473333 16000000 159547.310661 1073333 1084333 1158957 1110004 00 0340000
2 o Bl schedule 0000000 1086667 1000800 1110006 1000 0576667
s bulk_coschedler 14000000 1130000 118033 1110008 00 0ssoo0
4 i coscheduler3 14333333 1103333 2533 1110004 00 ossmn
Sythetioworkon s o schedule 0000000 1000000 1000800 1002100 1110008 1000 0340000
uilay B fllr_coschedute B 123 14945710095 e 6233 1123667 1110008 00 ose
workload.slts 4
workioad_plots_h - P
workioad_plots smoago satplotlib.pyplot

it
e e Batplotlib. patches as patches

e Full experiment traceability for °

post-analysis Ju pyter

ELiSE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Features

ELiSE: Features

e Python Multiprocessing
e Open MPI
e Intel MPI

e Distribution of multiple simulations in
parallel

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Features

What is co-location?

Node sharing between MPI applications

Current strategy:
Half Socket Allocation per app

Example of Co-location of 3 MPI apps:
e AppA, 8 cores
e App B, 4 cores
e AppC, 4 cores

on 2 nodes with 2 CPUs (4 cores each)

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-location?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
oy | <
c HENEEEEE o
=4 | | || [
EEEE 5
m
-~ HEEE o
2- A B C D AppSpeedup — Compact Execution Time
O Co-located Execution Time
o
=] Cluster
<
~ HEN =
B %
<C
] N
p=

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool

<« IHEEEEEN
o HENENEEE
HlEEEEEE

Ap

AppD AppC AppB
EEEE BN BN B
HEE BE
L]
L]

Co-location
Pairing

Speedups Heatmap

App A

D|C|[B]|A]

AppSpeedup =

Compact Execution Time

Co-located Execution Time

Cluster

ELISE: A tool to support algorithmic design for HPC co-scheduling

What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing

- IHEEENEN =
o HEEEEEEEN App A -
< HIHEEEEEN -

EEEN o
m
2 :
< A B C D AppSpeedup — CCOInpatctdE];(ocutit(.)n T;@c
O O-locate xecution me
o
2— HEERER App B Cluster
~ BN
- HEN
] | |

[[]

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool

<« IHEEEEEN
o HENENEEE
HlEEEEEE

Ap

AppD AppC AppB
EEEE BN BN B
HEE BE
L]
L]

Co-location
Pairing

App A

App C

Speedups Heatmap
| v |V
Q| v
o
)
A[B[CI[D AppSpeetun = G efion Time
Cluster

ELiSE: A tool to support algorithmic design for HPC co-scheduling

What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing

- IHEEEEEN i A A I
c HENEEEEE App A ol v
< IHEEEEEE

EEEE - Immp
0 ||
jEEE |
< CLATBICTDT | sy e oot
- HIHEEEN
=] Cluster
~ HER
> HEN
< HER

I

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
. AEEEEEEE </ |||
-Ennnmnnn | RN @ -
< IHEEEEEN
RN E | (o]
m
2 2k
< A B C D AppSpeedup — CCOInpatctdE];(ccutit(.)n T;@c
O O-locate xecution liime
- HHEEEE
< HEREEN Cluster
<
~ HEN =
- HEN .
NN E
— : .
B

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
. AEEEEEEE </ |||
- INEEEEEN "
< IHEEEEEE
EEEE o
m
- EamE 2k
< A B C D AppSpeedup — CCOInpatctdE];(ccutit(.)n T;@c
O O-locate xecution liime
- HIHEEEN
< HEREEN Cluster
<
~ HER =
- RES :
< .
I N
pzd
z

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing

<« IHEEEEEN
o HENENEEE
HlEEEEEE

Ap

Compact Execution Time

D AppSpeedup =

Co-located Execution Time

Cluster

AppD AppC AppB
EEEE BN BN B
EEEE BN R

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
- IHEEENEN I R A 4
-Ennennnn | RSN .
< HIHNEEEEN
NN App C olv | v
m
- HENE ol v |v
s HHEN et Excention Tinme
<E A B C D A= CCo;Ilp(ictd };{LLut:)n ;.HC
O O-locate xecution me
- HIHEEEN
=] Cluster
<
~ HER =
- RES :
< .
I =
“HEEEEN
~ HHEEEN

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing

- IHEEEEEN A A
- INEEEEEN T
< IHEEEEEE

HENE v
m
: AR i
< ATBICIDT | sonspo— ottt
- HIHEEEN
=] Cluster
~ HER
> HEN
< HER

I

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
- IHEEEEEE b A A A
-Eunnmmnn @ HNEEEN
< IHEEEEEE
HEEN App D olv|v|v]|v
m
- EamE anr
S A[BICID] AppSpeetun = G efion Time
- NN
=] Cluster
<
~ HEN -~ HEN
S .
< -
O00 n
-~ HEN
-~ NN

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
- IHEEEEEE s A A
. IR ™ R R R
=4 | | || [
HEEN olv|v|v]|v
m
a HEEE alv|v|v]|v
< A B C D AppSpeedup — Compact Execution Time
(@) PPop P~ Co-located Execution Time
- NN
=] Cluster
<
~ HEN =
- Ane :
<C
I N
zZ
p=

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool

<« IHEEEEEN
o HENENEEE
HlEEEEEE

Ap

AppD AppC AppB
EEEE BN BN B
EEEE BN R

Waiting Queue Cluster with Scheduler
Job B B
Job A -
z
Job D
Job A =
Job D =
Job C
Job C
Job D Cluster with Co-scheduler
Job B 2
2
P
z

ELISE: A tool to support algorithmic design for HPC co-scheduling

What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool

App A

AppD AppC AppB
EEEE BN BN B
HEE BE
L]
L]

Waiting Queue Cluster with Scheduler
Job A 3
Job D -
Z
Job A
Job D E
Job C - HHEN
B[]
Job C
Job D .
Job B Cluster with Co-scheduler
3
O’Z')
‘| o
_|
llll

ELISE: A tool to support algorithmic design for HPC co-scheduling

What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool Waiting Queue Cluster with Scheduler
Job D 3
{ENNEEEEN |) | | EEEEEE
S o | [[[][]
< HIHEEENEN Job D -
T ~ HIHEEEEEN
Job C i | | |
@ - HEN
- HEHE Job C =
)]
© ANEEEE Job B
<%] Cluster with Co-scheduler
N
~ HEN SN ERERR
N | - 1 HEHREEN
bd | Al EEEEER
] - AN
“HEEN |
- Il EEEN
"N | | | |

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool

Waiting Queue

Cluster with Scheduler

App A

AppD AppC AppB
HEE BE
L]
L]

Job A

Job D

Job C

Job C

Job D

Job B

| N1 | N2 | N3 | N4

ELISE: A tool to support algorithmic design for HPC co-scheduling

What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool Waiting Queue Cluster with Scheduler
Job D - EENEEEEEEEE
. NN e | peEEEE
c HENEEEEE 2
< HIHEEENEN Job C -
m — = = ====Illlll
HEEN Job B =
o | = EENEEEEEEEE
© ANEEEE
<%] Cluster with Co-scheduler
LI 3.|.|.|.====I|I|l|l|l|l|l|
@)
o N 8. | HEEEEEE
< HER =-aEEs | |
I ~HANNNNEE.
- | (e
E=Illllll RN

3
s p
B [

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool Waiting Queue Cluster with Scheduler
Job C . EENEEEEEEEN

- IHEEENEN il EENEEEEEEN
o - NN el © 0 B
< HEEN Job D -

| s o —~
- -

HEEN = HEEEEEN
S i N
° AEEEEE .
< HEREEN Cluster with Co-scheduler

- ANNNEREEESES
~ HEN .]
o HEE EEER | | |
| |

]|

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool Waiting Queue Cluster with Scheduler
Job C . EENEEEEEEE.
HEEEEEEE | EENEEEEEE.
= AN Job D . AEEEEEEES NN
s HAIEEEEEN Job B M [[[[[N
HEEN ~ NSNS e.
m M | [[PP
- HEEE N PP EE R]
S N -]
<
. AEEEEN
§ EEEEEE Cluster with Co-scheduler
HEEEEEEEEN | ||
~ HEN el
- NN HEEEN | | |
b | |
[

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool Waiting Queue Cluster with Scheduler
D < EENEEEEEEEN
Job - 000
oy T s 1 KH
c HENEEEEE o
< HHEENEEN -
HEER g
0 .
- HEEN -
o | =
© AEEEEE
<%] Cluster with Co-scheduler
- INNEEEEES SN NN
~ HEN mEEEE | | | | [| .
o N - HHHENEEEESSNSNNNE.
bd | mEEEE | | | | | [| .
]| ~ AN SN e
“ AN EEEEE |
E=Illllllllllllll|l

3
s
B [

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-scheduling?

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool

Waiting Queue

Cluster with Scheduler

App A

AppD AppC AppB
EEEE BN BN B
HEE BE
L]
L]

Job B

| N1 | N2 | N3 | N4

ELiSE: A tool to support algorithmic design for HPC co-scheduling

What is co-scheduling?

Cluster with Co-scheduler

What is co-scheduling?

Co-location in the time domain - FCFS example

Application Pool Waiting Queue Cluster with Scheduler
2 ERENEEEEEEEEEEN
. INEEEEEN & ENEEEE=
c HENEEEEE =
< HIHNEEEEN -
HEEN o _
o =
- HEHNR -
o | =
© IEEEEE
§ EEEEEE Cluster with Co-scheduler
- NN ENEE SN ...
-~ HEN mEEEE | [[P
o N - HHENEEEESSNSNNNE.
| | mEEEE | [[P ||
HEN ~ AHNENEEEESSS NS~
AN EEEEEEEENEe | |
E=Illlllllllllllllllll

3 = T
s
s

ELISE: A tool to support algorithmic design for HPC co-scheduling What is co-scheduling?

ELISE: High-level logic

The simulation workflow

e ELISE’s main engine
resembles a finite state
machine, with jobs moving
across four states

ELISE: A tool to support algorithmic design for HPC co-scheduling

Workload
Future State

Machine
Executing State

Finished
State

ELiSE: High-level logic

4mm—

Waiting Queue
Waiting State

|l

Scheduler

ELISE: High-level logic

The simulation workflow

e Jobs in the Future State have
been created, but the engine
has not yet reached their
scheduled arrival time

ELISE: A tool to support algorithmic design for HPC co-scheduling

Machine
Executing State

Finished
State

ELiSE: High-level logic

-

4mm—

Waiting Queue
Waiting State

|

Scheduler

ELISE: High-level logic

The simulation workflow

Workload
Future State

Machine — Scheduler

Executing State

e Jobs in the Waiting State
have arrived but aren’t
executed due to insufficient
system resources B
State

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: High-level logic

ELISE: High-level logic

The simulation workflow

° Th_e S(_:heduler determines oyl Waiting Queue 0O
which job to advance from the Future State Waiting State
Waiting Queue to the
Executing State based on its
resource requests

Machine 4—
Executing State
Finished
State

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: High-level logic

ELISE: High-level logic

The simulation workflow

e Jobs in the Executing State
are those which are currently
running in the system

ELiSE: A tool to support algorithmic design for HPC co-scheduling

Workload Waiting Queue
Future State /A—) Waiting State

A
- G Scheduler

Finished
State

ELiSE: High-level logic

ELISE: High-level logic

The simulation workflow

e Jobs in the Finished State are
those that have finished their
execution

ELISE: A tool to support algorithmic design for HPC co-scheduling

Workload
Future State

Machine
Executing State

ELiSE: High-level logic

4mm—

Waiting Queue
Waiting State

|

Scheduler

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and scheduling policy

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

Job
finishes

—

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

 »

Job
finishes

_—g

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

— Yy

Job
arrives

__'g

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

— Yy

Job
finishes

__-_g

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

— Y ¥

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run

ELISE: Co-scheduling adaptation

In detail

Mean Job Speedup: 1.12

o We are US|ng the heatmap Of the 2-1.15 1.02 1.12 0.86 0.89 1.16 0.89 0.92 l_H
workload to calculate the new remaining 5 Juua 10 [o0 100 o [EREE]|
t|me Of eaCh CO-SCheduled JOb l;}i-o.99 0.96 0.96 0.98 0.99 0.98 1.00 0.84 &

- O+ [

e The formula which calculates the new

remammg t|me |S the fO”OWlng i—1.25 1.07 1.08 1.07 1.051-240.94 093 |_
o- 113 BREL1.26 11.27 SEN 1.05 1.09 |
remEzecTime — speedupold X remExecTz'meold ’iﬂ#lj 1.03 1.23H 0.99 1.01 Ig

1 1 1 1 |
Speedupnew bt.D cg.D ep.E ftE is.E Ilu.D mg.E sp.D

e The new speedup of the job is calculated
by taking the minimum speedup gain
from the neighbors

speeduppe, = min {getSpeedupWith(job')}
Vco—scheduled(job)

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Co-scheduling adaptation : ——— ”:E”:S S

ELISE: Co-scheduling adaptation

In detail

ean Job Speedup: 1.12]

e \We are using the heatmap of the
workload to calculate the new remaining
time of each co-scheduled job

1.02 §1.12 0.86 0.89 1.16§ 0.89

o
4
o
a8
o
o
w
o)
()

- 0.99] 0.96 0.96 0.98 0.99 0.98]1.00 fo.84 "

e The formula which calculates the new
remaining time is the following:

- 1.25] 1.07 §1.08 1.07 1.05 '1.24§0.

sp.D mg.E lu.D is.E
1

speedupyg X remEzeclimeyy

remExeclime =
speedupnew
e The new speedup of the job is calculated e Forexample if ft.E is
by taking the minimum speedup gain co-scheduled with cg.D and
from the neighbors mg.E then the new speedup
speeduppe, = oo }{gliurlled(joy){getSpeedupWith(job')} will be

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Co-scheduling adaptation : ——— ”:E”:S S

ELISE: Co-scheduling adaptation

In detail

e At each step, we examine all
running jobs to identify any
that are co-scheduled. We
adjust their remaining time
according to the performance
gains or losses from their
neighbors

4
Job B finishes

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Co-scheduling adaptation

ELISE: Co-scheduling adaptation

In detail

e If the co-scheduled job is a
good neighbor then the
remaining time of the job
decreases

ELISE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: Co-scheduling adaptation

Job B finishes

ELISE: Co-scheduling adaptation

In detail

o Ifitisa neighbor then the
remaining time increases

& @ Z O
Job B finishes

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Co-scheduling adaptation

ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

e In ELIiSE all schedulers create a
class hierarchy, making it easier to
extend and combine algorithms into
a new scheduler

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler

ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

Scheduler
—

e The root of the hierarchy is the
Scheduler abstract class. It defines
the specifications for the rest of the
scheduling algorithms

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler

ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

Scheduler

—

O

Co-Scheduler

e The Co-Scheduler abstract class
extends Scheduler to include
co-scheduling schemes

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler

ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

Scheduler

O FCFS

Scheduler

f i
O EASY O EASY

Scheduler Co-Scheduler

Co-Scheduler

e All well known algorithms like FCFS, O..
SJF, EASY Backfill, Conservative Scheduler
Backfill, etc. can be implemented

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler

ELISE: Develop a (co-)Scheduler

Examples of implemented (co-)Schedulers

Scheduler Description

Implements the SLURM’s standard scheduling
algorithm

Conservative FCFS

Shortest / Longest / Largest Prioritizes shortest / longest / largest jobs in the
Job First Co-scheduler waiting queue

Sacrifices user fairness by re-ordering the waiting

Filler Co-scheduler : : S
queue in order to increase system utilization

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler

ELISE: Develop a (co-)Scheduler

A (co-)Schedulers study based on the Makespan Speedup metric

Boxplot of Makespan Speedup (over Conservative) by Scheduler

=
=
N
w

()
2
]

©

>

[

Q

()]

C

(o]
©)]

—

()

>
8

[oX

=]
©

()

]

Q.
n

(=

@©

Q

n

U]
X

©
=

Scheduler

ELiSE: A tool fo support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler

ELiSE: Evaluation

Overview
Tests
° test ELISE by comparing small scale results with a real system
° assess first co-scheduling outcomes
° compare real processing time against simulation time across workloads and clusters

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation

ELiSE: Evaluation

Overview

Benchmarks
e NPB suite, D and E classes
e 04,128, 512, 1024 process count
e Heatmap of Speedups from real systems

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation

ELiSE: Evaluation

Overview
Metrics
° total time required to complete a set of jobs
° total time taken for a job from submission to completion
° the percentage of the system that is in use until the waiting queue is empty
° simulated makespan / real time in simulated days per real hour

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation : =] ”:E”:S 5

ELiSE: Evaluation

Overview

Experimental Setup

CPU Type

CPUs per Node
Cores per CPU
Cores per Node
Hyperthreading
Memory per Node
Network

CPU Type

CPUs per Node
Cores per CPU
Cores per Node
Hyperthreading
Memory per Node
Network

Intel Xeon E5-2680v2 (Ivy Bridge), 2.8 GHz
2

10

20

OFF

64 GB

Infiniband FDR, 56 Gb/s

Intel Xeon Gold 6130, 2.10 GHz
2

16

32

OFF

192 GB

Intel Omni-Path, 100 Gb/s

ELISE: A tool to support algorithmic design for HPC co-scheduling

CPU Type

CPUs per Node
Cores per CPU
Cores per Node
Hyperthreading
Memory per Node
Network

ELiSE: Evaluation

Intel Xeon 8160 (SkyLake), 2.10 GHz
2

24

48

OFF

196 GB

Intel Omni-Path, 100 Gb/s

Used for validation

ELiSE: Evaluation

Validation

o ~1h(48)
o 2h-3h(136)

200
= 3h-4h(136)

-
a
o

Makespan:

MAPE _ 1, :0.6%
MAPE; _35:2.6%
MAPE; _4p:4.1%

5
E
o
E
= 100
@
<
O

Turnaround:

MAPE _ 15 :10.7%
MAPE; _3,: 6.9%
MAPE3_44: 6.7%

100 150 200
ELISE Time (min)

e 6 experiments: 2x(48 jobs, 1h), 2x(136 jobs,
2-3h),

e Point: turnaround time of one job

e Real vs. simulated times: low gap

e Differences due to:
o slight per-job execution time variation
o system overhead
o scheduler overhead

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation

ELiSE: Evaluation

Validation

5%
mix 5: 14.8%
mix 6: 7.4%

mix I mix2 mix3 mix4 mix5 mix6

Extended OAR to support co-location

e 30 experiments: 6 application mixes with
increasing Mean Job Speedup; 5 job shuffles
per mix

e Results vs. reality: close match
Mean Absolute Percentage Error (MAPE) =15%

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation

ELiSE: Evaluation

Co-scheduling Results

1.07 24.42 %
1.10 25.29 %
1.12 25.87 %
1.15 30.63 %

e 4 workloads, 5 shuffles each; cluster: 100
nodes, 48 cores

e Each workload: 500 jobs from Marconi
system applications; selection based on

e Correlation between MJS and MS
e High Makespan improvement over EASY
e Process count: 256 across 4 workloads

progressively increasing Mean Job Speedup

ELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: Evaluation

ELiSE: Evaluation

Co-scheduling Results

ELISE: A tool to support algorithmic design for HPC co-scheduling

@4 EASY Co-Scheduler

Makespan Improvement (%)

256/64 256/64/512
Process Count Diversity

4 workloads, 500 jobs each from ARIS
system; with increasing process count
diversity

Greater process count diversity — reduced
benefits from simple co-scheduling

Cause: resource fragmentation; effect: low
System Utilization (from ELISE diagrams)

ELiSE: Evaluation

ELiSE: Evaluation

Co-scheduling Results

ELISE: A tool to support algorithmic design for HPC co-scheduling

@4 EASY Co-Scheduler
B Filler Co-Scheduler

Makespan Improvement (%)

256/64 256/64/512
Process Count Diversity

Implemented Filler Co-scheduler; crude
filling of unutilized resources with besi-fit
waiting jobs

Co-scheduling benefits preserved user
fairness compromised — FCFS principle
violations in waiting queue

ELiSE: Evaluation

ELiSE: Evaluation

Performance

FCFS Scheduler

256 cores 25600 cores 2560000 cores
100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83
EASY Scheduler

256 cores 25600 cores 2560000 cores
100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83

e Different cluster and workload sizes; 50
repetitions per experiment

e Workload size: 10-fold increase — 10-fold
increase in simulation time

e Cluster size: 100-fold increase — 10-fold
increase in simulation time

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation

ELiSE: Evaluation

Performance

SDSC-SP2-1998 116.87 1M7.77
128 nodes, 64 ppn, 73496 jobs
KIT-FH2-2016 28.32 27.19

1152 nodes, 20 ppn, 114335 jobs

e 2 real workloads in ELISE from

e First workload: 7 hours for 2-year trace for
both FCFS and EASY schedulers (parallel
execution)

e Second workload: maximum 20 hours for
1.5-year trace for both schedulers

e Fast simulation for small/medium cases,
tolerable times for very large cases

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation

ELiSE: Future Work

Focus on three main axes:
o Co-scheduling model extensions
o Power consumption models, I/O bound applications, fault tolerance, etc
o Additional visualization tools
o Improved interfaces and API

o Automated (co-)scheduling parameters optimization

o Faster large scale HPC simulation runs

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Future Work

ELiSE: More info

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: More info

ELiSE: More info

Join us on () GitHub ()
e Contribute with your (co-)scheduler implementation
e Contribute with your HPC cluster benchmark
e Report bugs
e Suggest features

Join us on [] 21scoro ()
e Join our community!
e Get notifications on the latest commits, bug fixes and releases
e Get updates on the next features and events
o Q&A

ELiSE: A tool to support algorithmic design for HPC co-scheduling ELiSE: More info

https://discord.gg/cABwcWhBSx
https://github.com/cslab-ntua/elise

ELISE

-

THANK YOU FOR LISTENING

ELiSE: A tool to support algorithmic design for HPC co-scheduling ELISE

