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Introduction

e Efficient Lightweight Scheduling Estimator
e A framework for fast prototyping and evaluation of scheduling and
co-scheduling algorithms for HPC systems

Testing in a real HPC cluster is fime-consuming and expensive
Access to large scale resources is not straightforward
Challenges in extending a real scheduler

No administrative privileges for such changes

e Sharing node resources of memory-intensive jobs can boost performance
e Through it, potential gains in system throughput and reduced job wait times
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ELiSE: Features

Number of finished jobs per scheduler
Input 0

e A graphical, web and command-line ISELISE

interface mera—

Schematic
[

Scheduters @~

PS > python .\elise.py $env:ELiSE_CONFIGS p intelmpi
Overall Progress: 100.00%
Simulation ID Input ID Scheduler ID | Scheduler Name Real Time Simulated Time Time Rat3
2] Q @ | EASY Scheduler 0:00:13.584444 | 18 days_11:11:45
1 ] 1 FIFO Scheduler 0:00:09.161662 19 days_17:58:50
PS >

1 IPDPS
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ELiSE: Features

e Workload generation with in-built or
custom algorithms

ELISE: A tool to support algorithmic design for HPC co-scheduling

Inputs

Logs configuration
Source
Source Input
Machine

Suite

Heatmap configuration

Custom Heatmap

Workload configuration
Generator

Generator Input

® Enable distribution
Distribution

Distribution Input

Cluster
Nodes

Socket configuration
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ELiSE: Features

Schedulers’ Hierarchy X

e Bundled schedulers or user-defined

Schedulers % X
Defaults v | EASY Scheduler v
Default ® Backfilling Compact fallback
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ELiSE: Features

Time Ratio
(Simulated Days /
1 real hour)

Scheduler Simulated

1D Scheduler Name | Real Time Time

9 days

0 0 (0] FCFS Scheduler 0:00:03.137 16:35:05

11121.375

P Repor.l.s qnd diogrqms for Scheduling 1 0 1 EASY Scheduler = 0:00:05.137 9 days 1:46:45 6359.114
evaluation:
o General simulation , rea | fime 2 0 2 | Filler Co-Scheduler | 0:00:04.582 18233?/551 6701.856
reports

Job Submit = 2 = Number of Allocated Average CPU Used Requested Number of Reque
Number Time L il el Processors Time Used Memory Processors Td
40 0.000 34845 .000 |4540.000 64 64 6356
41 0.000 34845 .000 |3470.000 32 32 4858
42 0.000 12165 .000 |2630.000 32 32 3682
43 0.000 37275 .000 |3580.000 128 121 5012
44 0.000 | 37275.000 |3470.000 32 32 4858
45 0.000 38315.000 |2630.000 32 32 3682
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ELiSE: Features

EASY Scheduler

Cores

e Reports and diagrams for scheduling
evqlunion: e 2 By Vs, 1%5-‘5@ S, 1%"3, '1 %2, VI by, " ., Ids*'ez_.

%>

Time

Filler Co-Scheduler

o Gantt diagrams

Cores

o,
"0
00
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ELiSE: Features

Number of finished jobs per scheduler
Input O
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Cluster utilization per scheduler
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ELiSE: Features
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ELiSE: Features

e Python Multiprocessing
e Open MPI
e Intel MPI

e Distribution of multiple simulations in
parallel
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What is co-location?

Node sharing between MPI applications

Current strategy:
Half Socket Allocation per app

Example of Co-location of 3 MPI apps:
e AppA, 8 cores
e App B, 4 cores
e AppC, 4 cores

on 2 nodes with 2 CPUs (4 cores each)
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?

Computation Method

Application Pool
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?
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What is a Heatmap of Speedups?

Computation Method

Application Pool Co-location Speedups Heatmap
Pairing
- IHEEEEEE b A A A
-Eunnmmnn @ HNEEEN
< IHEEEEEE
HEEN App D olv|v|v]|v
m
- EamE anr
S A[BICID] AppSpeetun = G efion Time
- NN
= ] Cluster
<
~ HEN -~ HEN
S .
< -
O00 n
-~ HEN
-~ NN

ELISE: A tool to support algorithmic design for HPC co-scheduling What is a Heatmap of Speedups?



What is a Heatmap of Speedups?
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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What is co-scheduling?

Co-location in the time domain - FCFS example
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ELISE: High-level logic

The simulation workflow

e ELISE’s main engine
resembles a finite state
machine, with jobs moving
across four states

ELISE: A tool to support algorithmic design for HPC co-scheduling

Workload
Future State

Machine
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Finished
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ELISE: High-level logic

The simulation workflow

e Jobs in the Future State have
been created, but the engine
has not yet reached their
scheduled arrival time

ELISE: A tool to support algorithmic design for HPC co-scheduling
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ELISE: High-level logic

The simulation workflow

Workload
Future State

Machine — Scheduler

Executing State

e Jobs in the Waiting State
have arrived but aren’t
executed due to insufficient
system resources B
State
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ELISE: High-level logic

The simulation workflow

° Th_e S(_:heduler determines oyl Waiting Queue 0O
which job to advance from the Future State Waiting State
Waiting Queue to the
Executing State based on its
resource requests

Machine 4—
Executing State
Finished
State
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ELISE: High-level logic

The simulation workflow

e Jobs in the Executing State
are those which are currently
running in the system

ELiSE: A tool to support algorithmic design for HPC co-scheduling

Workload Waiting Queue
Future State /A—) Waiting State

A
- G Scheduler

Finished
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ELISE: High-level logic

The simulation workflow

e Jobs in the Finished State are
those that have finished their
execution

ELISE: A tool to support algorithmic design for HPC co-scheduling
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events

Simulation run timespan
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and scheduling policy

Simulation run timespan
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

Simulation run timespan

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Life-cycle of a simulation run



ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

Job
finishes

—

Simulation run timespan
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

 »

Job
finishes

_—g

Simulation run timespan
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

— Yy

Job
arrives

__'g

Simulation run timespan
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

— Yy

Job
finishes
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Simulation run timespan
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ELISE: Life-cycle of a simulation run

In detail

e Simulation run = = multiple events
e At each step, job state transitions based on current state and schedullng policy
e For each step, the next event is calculated by selecting the

o the arrival time of each future job

o the remaining time of each executing job

— Y ¥

Simulation run timespan
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ELISE: Co-scheduling adaptation

In detail

Mean Job Speedup: 1.12

o We are US|ng the heatmap Of the 2-1.15 1.02 1.12 0.86 0.89 1.16 0.89 0.92 l_H
workload to calculate the new remaining 5 Juua 10 [ o0 100 o [EREE]|
t|me Of eaCh CO-SCheduled JOb l;}i-o.99 0.96 0.96 0.98 0.99 0.98 1.00 0.84 &

- O+ [

e The formula which calculates the new

remammg t|me |S the fO”OWlng i—1.25 1.07 1.08 1.07 1.051-240.94 093 |_
o- 113 BREL1.26 11.27 SEN 1.05 1.09 |
remEzecTime — speedupold X remExecTz'meold ’iﬂ#lj 1.03 1.23H 0.99 1.01 Ig

1 1 1 1 |
Speedupnew bt.D cg.D ep.E ftE is.E Ilu.D mg.E sp.D

e The new speedup of the job is calculated
by taking the minimum speedup gain
from the neighbors

speeduppe, = min {getSpeedupWith(job')}
Vco—scheduled(job)
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ELISE: Co-scheduling adaptation

In detail

ean Job Speedup: 1.12]

e \We are using the heatmap of the
workload to calculate the new remaining
time of each co-scheduled job

1.02 §1.12 0.86 0.89 1.16§ 0.89

o
4
o
a8
o
o
w
o)
()

- 0.99] 0.96 0.96 0.98 0.99 0.98]1.00 fo.84 "

e The formula which calculates the new
remaining time is the following:

- 1.25] 1.07 §1.08 1.07 1.05 '1.24§0.

sp.D mg.E lu.D is.E
1

speedupyg X remEzeclimeyy

remExeclime =
speedupnew
e The new speedup of the job is calculated e Forexample if ft.E is
by taking the minimum speedup gain co-scheduled with cg.D and
from the neighbors mg.E then the new speedup
speeduppe, = oo }{gliurlled(joy){getSpeedupWith(job')} will be
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ELISE: Co-scheduling adaptation

In detail

e At each step, we examine all
running jobs to identify any
that are co-scheduled. We
adjust their remaining time
according to the performance
gains or losses from their
neighbors

4
Job B finishes
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ELISE: Co-scheduling adaptation

In detail

e If the co-scheduled job is a
good neighbor then the
remaining time of the job
decreases

ELISE: A tool to support algorithmic design for HPC co-scheduling
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Job B finishes




ELISE: Co-scheduling adaptation

In detail

o Ifitisa neighbor then the
remaining time increases

& @ Z O
Job B finishes

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Co-scheduling adaptation



ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

e In ELIiSE all schedulers create a
class hierarchy, making it easier to
extend and combine algorithms into
a new scheduler

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler



ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

Scheduler
—

e The root of the hierarchy is the
Scheduler abstract class. It defines
the specifications for the rest of the
scheduling algorithms

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler




ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

Scheduler

—

O

Co-Scheduler

e The Co-Scheduler abstract class
extends Scheduler to include
co-scheduling schemes

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler



ELISE: Develop a (co-)Scheduler

The Structure of the Schedulers

Scheduler

O FCFS

Scheduler

f i
O EASY O EASY

Scheduler Co-Scheduler

Co-Scheduler

e All well known algorithms like FCFS, O.. .. ..
SJF, EASY Backfill, Conservative Scheduler
Backfill, etc. can be implemented

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler



ELISE: Develop a (co-)Scheduler

Examples of implemented (co-)Schedulers

Scheduler Description

Implements the SLURM’s standard scheduling
algorithm

Conservative FCFS

Shortest / Longest / Largest Prioritizes shortest / longest / largest jobs in the
Job First Co-scheduler waiting queue

Sacrifices user fairness by re-ordering the waiting

Filler Co-scheduler : : S
queue in order to increase system utilization

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Develop a (co-)Scheduler



ELISE: Develop a (co-)Scheduler

A (co-)Schedulers study based on the Makespan Speedup metric

Boxplot of Makespan Speedup (over Conservative) by Scheduler
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ELiSE: Evaluation

Overview
Tests
° test ELISE by comparing small scale results with a real system
° assess first co-scheduling outcomes
° compare real processing time against simulation time across workloads and clusters

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation



ELiSE: Evaluation

Overview

Benchmarks
e NPB suite, D and E classes
e 04,128, 512, 1024 process count
e Heatmap of Speedups from real systems

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation



ELiSE: Evaluation

Overview
Metrics
° total time required to complete a set of jobs
° total time taken for a job from submission to completion
° the percentage of the system that is in use until the waiting queue is empty
° simulated makespan / real time in simulated days per real hour

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation : = ] ”:E”:S 5



ELiSE: Evaluation

Overview

Experimental Setup

CPU Type

CPUs per Node
Cores per CPU
Cores per Node
Hyperthreading
Memory per Node
Network

CPU Type

CPUs per Node
Cores per CPU
Cores per Node
Hyperthreading
Memory per Node
Network

Intel Xeon E5-2680v2 (Ivy Bridge), 2.8 GHz
2

10

20

OFF

64 GB

Infiniband FDR, 56 Gb/s

Intel Xeon Gold 6130, 2.10 GHz
2

16

32

OFF

192 GB

Intel Omni-Path, 100 Gb/s

ELISE: A tool to support algorithmic design for HPC co-scheduling

CPU Type

CPUs per Node
Cores per CPU
Cores per Node
Hyperthreading
Memory per Node
Network

ELiSE: Evaluation

Intel Xeon 8160 (SkyLake), 2.10 GHz
2

24

48

OFF

196 GB

Intel Omni-Path, 100 Gb/s

Used for validation




ELiSE: Evaluation

Validation

o ~1h(48)
o 2h-3h(136)

200
= 3h-4h(136)

-
a
o

Makespan:

MAPE _ 1, :0.6%
MAPE; _35:2.6%
MAPE; _4p:4.1%

5
E
o
E
= 100
@
<
O

Turnaround:

MAPE _ 15 :10.7%
MAPE; _3,: 6.9%
MAPE3_44: 6.7%

100 150 200
ELISE Time (min)

e 6 experiments: 2x(48 jobs, 1h), 2x(136 jobs,
2-3h),

e Point: turnaround time of one job

e Real vs. simulated times: low gap

e Differences due to:
o slight per-job execution time variation
o system overhead
o  scheduler overhead

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation



ELiSE: Evaluation

Validation

5%
mix 5: 14.8%
mix 6: 7.4%

mix I mix2 mix3 mix4 mix5 mix6

Extended OAR to support co-location

e 30 experiments: 6 application mixes with
increasing Mean Job Speedup; 5 job shuffles
per mix

e Results vs. reality: close match
Mean Absolute Percentage Error (MAPE) =15%

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation



ELiSE: Evaluation

Co-scheduling Results

1.07 24.42 %
1.10 25.29 %
1.12 25.87 %
1.15 30.63 %

e 4 workloads, 5 shuffles each; cluster: 100
nodes, 48 cores

e Each workload: 500 jobs from Marconi
system applications; selection based on

e Correlation between MJS and MS
e High Makespan improvement over EASY
e Process count: 256 across 4 workloads

progressively increasing Mean Job Speedup

ELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: Evaluation




ELiSE: Evaluation

Co-scheduling Results

ELISE: A tool to support algorithmic design for HPC co-scheduling

@4 EASY Co-Scheduler

Makespan Improvement (%)

256/64 256/64/512
Process Count Diversity

4 workloads, 500 jobs each from ARIS
system; with increasing process count
diversity

Greater process count diversity — reduced
benefits from simple co-scheduling

Cause: resource fragmentation; effect: low
System Utilization (from ELISE diagrams)

ELiSE: Evaluation




ELiSE: Evaluation

Co-scheduling Results

ELISE: A tool to support algorithmic design for HPC co-scheduling

@4 EASY Co-Scheduler
B Filler Co-Scheduler

Makespan Improvement (%)

256/64 256/64/512
Process Count Diversity

Implemented Filler Co-scheduler; crude
filling of unutilized resources with besi-fit
waiting jobs

Co-scheduling benefits preserved user
fairness compromised — FCFS principle
violations in waiting queue

ELiSE: Evaluation




ELiSE: Evaluation

Performance

FCFS Scheduler

256 cores 25600 cores 2560000 cores
100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83
EASY Scheduler

256 cores 25600 cores 2560000 cores
100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83

e Different cluster and workload sizes; 50
repetitions per experiment

e Workload size: 10-fold increase — 10-fold
increase in simulation time

e Cluster size: 100-fold increase — 10-fold
increase in simulation time

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation




ELiSE: Evaluation

Performance

SDSC-SP2-1998 116.87 1M7.77
128 nodes, 64 ppn, 73496 jobs
KIT-FH2-2016 28.32 27.19

1152 nodes, 20 ppn, 114335 jobs

e 2 real workloads in ELISE from

e First workload: 7 hours for 2-year trace for
both FCFS and EASY schedulers (parallel
execution)

e Second workload: maximum 20 hours for
1.5-year trace for both schedulers

e Fast simulation for small/medium cases,
tolerable times for very large cases

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Evaluation




ELiSE: Future Work

Focus on three main axes:
o Co-scheduling model extensions
o Power consumption models, I/O bound applications, fault tolerance, etc
o Additional visualization tools
o Improved interfaces and API

o Automated (co-)scheduling parameters optimization

o Faster large scale HPC simulation runs

ELISE: A tool to support algorithmic design for HPC co-scheduling ELiSE: Future Work
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ELiSE: More info

Join us on () GitHub ( )
e Contribute with your (co-)scheduler implementation
e Contribute with your HPC cluster benchmark
e Report bugs
e Suggest features

Join us on [] 21scoro ( )
e Join our community!
e Get notifications on the latest commits, bug fixes and releases
e Get updates on the next features and events
o Q&A

ELiSE: A tool to support algorithmic design for HPC co-scheduling ELiSE: More info


https://discord.gg/cABwcWhBSx
https://github.com/cslab-ntua/elise

ELISE

-

THANK YOU FOR LISTENING
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