
Efstratios Karapanagiotis, Nikolaos Triantafyllis,
Athanasios Tsoukleidis-Karydakis, Georgios Goumas,
Nectarios Koziris

A tool to support algorithmic design for
HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

Introduction

What is ELiSE?
● Efficient Lightweight Scheduling Estimator
● A framework for fast prototyping and evaluation of scheduling and

co-scheduling algorithms for HPC systems

Why did we create it?
● Testing in a real HPC cluster is time-consuming and expensive
● Access to large scale resources is not straightforward
● Challenges in extending a real scheduler
● No administrative privileges for such changes

Why co-scheduling capability?
● Sharing node resources of memory-intensive jobs can boost performance
● Through it, potential gains in system throughput and reduced job wait times

IntroductionELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

● Bundled schedulers or user-defined

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

● Bundled schedulers or user-defined
● Reports and diagrams for scheduling

evaluation:
○ General simulation, real time

reports

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation
ID Input ID Scheduler

ID Scheduler Name Real Time Simulated
Time

Time Ratio
(Simulated Days /

1 real hour)

0 0 0 FCFS Scheduler 0:00:03.137 9 days
16:35:05 11121.375

1 0 1 EASY Scheduler 0:00:05.137 9 days 1:46:45 6359.114

2 0 2 Filler Co-Scheduler 0:00:04.582 8 days
12:41:51 6701.856

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

● Bundled schedulers or user-defined
● Reports and diagrams for scheduling

evaluation:
○ General simulation, real time

reports
○ Gantt diagrams

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

● Bundled schedulers or user-defined
● Reports and diagrams for scheduling

evaluation:
○ General simulation, real time

reports
○ Gantt diagrams
○ Throughput, Waiting Queue and

System Utilization

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

● Bundled schedulers or user-defined
● Reports and diagrams for scheduling

evaluation:
○ General simulation, real time

reports
○ Gantt diagrams
○ Throughput, Waiting Queue and

System Utilization
● Full experiment traceability for

post-analysis

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Features

● A graphical, web and command-line
interface

● Workload generation with in-built or
custom algorithms

● Bundled schedulers or user-defined
● Reports and diagrams for scheduling

evaluation:
○ General simulation, real time

reports
○ Gantt diagrams
○ Throughput, Waiting Queue and

System Utilization
● Full experiment traceability for

post-analysis
● Distribution of multiple simulations in

parallel

ELiSE: FeaturesELiSE: A tool to support algorithmic design for HPC co-scheduling

Inputs

Schedulers

Providers
● Python Multiprocessing
● Open MPI
● Intel MPI

Current strategy:
Half Socket Allocation per app

Example of Co-location of 3 MPI apps:
● App A, 8 cores
● App B, 4 cores
● App C, 4 cores

on 2 nodes with 2 CPUs (4 cores each)

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-location?
Node sharing between MPI applications

What is co-location?ELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is a Heatmap of Speedups?
Computation Method

Application Pool

N
1

N
2

N
3

N
4

Speedups Heatmap

Cluster

Co-location
Pairing

A
B

C
D

A B C D

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is a Heatmap of Speedups?
Computation Method

Application Pool

N
1

N
2

N
3

N
4

Speedups Heatmap

Cluster

A
B

C
D

A B C D

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App A

App A

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is a Heatmap of Speedups?
Computation Method

Application Pool

N
1

N
2

N
3

N
4

Speedups Heatmap

Cluster

A
B

C
D

A B C D

✓

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App A

App B

App B

App B

App B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is a Heatmap of Speedups?
Computation Method

Application Pool

N
1

N
2

N
3

N
4

Speedups Heatmap

Cluster

A
B

C
D

A B C D

✓ ✓

✓

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App A

App C

App C

App C

App C

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is a Heatmap of Speedups?
Computation Method

Application Pool

N
1

N
2

N
3

N
4

Speedups Heatmap

Cluster

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App A

App D

App D

App D

What is a Heatmap of Speedups?
Computation Method

Application Pool Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App B

App B

What is a Heatmap of Speedups?
Computation Method

Application Pool Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App B

App C

App B

What is a Heatmap of Speedups?
Computation Method

Application Pool Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

✓ ✓

✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App B

App D

App B

App D

App C

App C

What is a Heatmap of Speedups?
Computation Method

Application Pool Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

✓ ✓

✓

✓

✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

What is a Heatmap of Speedups?
Computation Method

Application Pool Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

✓ ✓

✓

✓

✓

✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App C

App D

App C

App D

What is a Heatmap of Speedups?
Computation Method

Application Pool Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

✓ ✓

✓

✓

✓

✓ ✓

✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Co-location
Pairing

App D

App D

What is a Heatmap of Speedups?
Computation Method

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

Speedups Heatmap

A
B

C
D

A B C D

✓ ✓

✓

✓

✓

✓

✓

✓ ✓

✓

✓

✓

✓ ✓

✓ ✓

N
1

N
2

N
3

N
4

Cluster

What is a Heatmap of Speedups?ELiSE: A tool to support algorithmic design for HPC co-scheduling

Co-location
Pairing

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job B
Job A
Job D
Job A
Job D
Job C
Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job A
Job D
Job A
Job D
Job C
Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job D
Job A
Job D
Job C
Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job A
Job D
Job C
Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job D
Job C
Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job C
Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job C
Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job D
Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

Job B

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

What is co-scheduling?
Co-location in the time domain - FCFS example

Application Pool

A
pp

 A
A

pp
 B

A
pp

 C
A

pp
 D

N
1

N
2

N
3

N
4

Cluster with Co-scheduler

Waiting Queue

What is co-scheduling?ELiSE: A tool to support algorithmic design for HPC co-scheduling

N
1

N
2

N
3

N
4

Cluster with Scheduler

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: High-level logic
The simulation workflow

Finished
State

Scheduler

Waiting Queue
Waiting State

Machine
Executing State

● ELiSE’s main engine
resembles a finite state
machine, with jobs moving
across four states

Workload
Future State

ELiSE: High-level logicELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: High-level logic
The simulation workflow

JSSPP, IPDPS 2025 MilanELiSE: HPC Scheduling Estimator with co-location capabilities

Finished
State

Scheduler

Waiting Queue
Waiting State

Machine
Executing State

● ELiSE’s main engine
resembles a finite state
machine, with jobs moving
across four states

● Jobs in the Future State have
been created, but the engine
has not yet reached their
scheduled arrival time

Workload
Future State

ELiSE: High-level logicELiSE: A tool to support algorithmic design for HPC co-scheduling

All jobs start in
this state

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: High-level logic
The simulation workflow

Finished
State

Scheduler

Waiting Queue
Waiting State

Machine
Executing State

● ELiSE’s main engine
resembles a finite state
machine, with jobs moving
across four states

● Jobs in the Future State have
been created, but the engine
has not yet reached their
scheduled arrival time

● Jobs in the Waiting State
have arrived but aren’t
executed due to insufficient
system resources

Workload
Future State

ELiSE: High-level logicELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: High-level logic
The simulation workflow

Finished
State

Scheduler

Waiting Queue
Waiting State

Machine
Executing State

● The Scheduler determines
which job to advance from the
Waiting Queue to the
Executing State based on its
resource requests

Workload
Future State

ELiSE: High-level logicELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: High-level logic
The simulation workflow

Finished
State

Scheduler

Waiting Queue
Waiting State

Machine
Executing State

● The Scheduler determines
which job to advance from the
Waiting Queue to the
Executing State based on its
resource requests

● Jobs in the Executing State
are those which are currently
running in the system

Workload
Future State

ELiSE: High-level logicELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: High-level logic
The simulation workflow

Finished
State

Scheduler

Waiting Queue
Waiting State

Machine
Executing State

● The Scheduler determines
which job to advance from the
Waiting Queue to the
Executing State based on its
resource requests

● Jobs in the Executing State
are those which are currently
running in the system

● Jobs in the Finished State are
those that have finished their
execution

Workload
Future State

ELiSE: High-level logicELiSE: A tool to support algorithmic design for HPC co-scheduling

The simulation is
considered complete
when all jobs reach
this state

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy
● For each step, the next event is calculated by selecting the minimum of:

○ the arrival time of each future job
○ the remaining time of each executing job

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy
● For each step, the next event is calculated by selecting the minimum of:

○ the arrival time of each future job
○ the remaining time of each executing job

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

Job
finishes

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy
● For each step, the next event is calculated by selecting the minimum of:

○ the arrival time of each future job
○ the remaining time of each executing job

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

Job
finishes

Job
finishes

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy
● For each step, the next event is calculated by selecting the minimum of:

○ the arrival time of each future job
○ the remaining time of each executing job

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

Job
finishes

Job
finishes

Job
arrives

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy
● For each step, the next event is calculated by selecting the minimum of:

○ the arrival time of each future job
○ the remaining time of each executing job

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Simulation run timespan

Job
finishes

Job
finishes

Job
arrives

Job
finishes

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Life-cycle of a simulation run
In detail

● Simulation run = multiple discrete steps = multiple events
● At each step, job state transitions based on current state and scheduling policy
● For each step, the next event is calculated by selecting the minimum of:

○ the arrival time of each future job
○ the remaining time of each executing job

ELiSE: Life-cycle of a simulation runELiSE: A tool to support algorithmic design for HPC co-scheduling

Job
finishes

Simulation run timespan

Job
finishes

Job
arrives

Job
finishes

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Co-scheduling adaptation
In detail

ELiSE: Co-scheduling adaptationELiSE: A tool to support algorithmic design for HPC co-scheduling

● We are using the heatmap of the
workload to calculate the new remaining
time of each co-scheduled job

● The formula which calculates the new
remaining time is the following:

● The new speedup of the job is calculated
by taking the minimum speedup gain
from the neighbors

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Co-scheduling adaptation
In detail

● We are using the heatmap of the
workload to calculate the new remaining
time of each co-scheduled job

● The formula which calculates the new
remaining time is the following:

● The new speedup of the job is calculated
by taking the minimum speedup gain
from the neighbors

ELiSE: Co-scheduling adaptationELiSE: A tool to support algorithmic design for HPC co-scheduling

● For example if ft.E is
co-scheduled with cg.D and
mg.E then the new speedup
will be 1.18

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Co-scheduling adaptation
In detail

● At each step, we examine all
running jobs to identify any
that are co-scheduled. We
adjust their remaining time
according to the performance
gains or losses from their
neighbors

ELiSE: Co-scheduling adaptationELiSE: A tool to support algorithmic design for HPC co-scheduling

Remaining timeJob B

Job B finishes

Job A

Job A will finish

Job A

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Co-scheduling adaptation
In detail

● At each step, we examine all
running jobs to identify any
that are co-scheduled. We
adjust their remaining time
according to the performance
gains or losses from their
neighbors

● If the co-scheduled job is a
good neighbor then the
remaining time of the job
decreases

ELiSE: Co-scheduling adaptationELiSE: A tool to support algorithmic design for HPC co-scheduling

Remaining time

Job C

Decrease

Job A

Job B

Job B

Job B finishes Job A will finish

Job A

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Co-scheduling adaptation
In detail

● At each step, we examine all
running jobs to identify any
that are co-scheduled. We
adjust their remaining time
according to the performance
gains or losses from their
neighbors

● If the co-scheduled job is a
good neighbor then the
remaining time of the job
decreases

● If it is a bad neighbor then the
remaining time increases

ELiSE: Co-scheduling adaptationELiSE: A tool to support algorithmic design for HPC co-scheduling

Remaining time

Job C

Decrease

Job A

Job C

Increase

Job A

Job B

Job B

Job B

Job B finishes Job A will finish

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Develop a (co-)Scheduler
The Structure of the Schedulers

● In ELiSE all schedulers create a
class hierarchy, making it easier to
extend and combine algorithms into
a new scheduler

ELiSE: Develop a (co-)SchedulerELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Develop a (co-)Scheduler
The Structure of the Schedulers

● In ELiSE all schedulers create a
class hierarchy, making it easier to
extend and combine algorithms into
a new scheduler

● The root of the hierarchy is the
Scheduler abstract class. It defines
the specifications for the rest of the
scheduling algorithms

ELiSE: Develop a (co-)SchedulerELiSE: A tool to support algorithmic design for HPC co-scheduling

A
Scheduler

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Develop a (co-)Scheduler
The Structure of the Schedulers

● In ELiSE all schedulers create a
class hierarchy, making it easier to
extend and combine algorithms into
a new scheduler

● The root of the hierarchy is the
Scheduler abstract class. It defines
the specifications for the rest of the
scheduling algorithms

● The Co-Scheduler abstract class
extends Scheduler to include
co-scheduling schemes

ELiSE: Develop a (co-)SchedulerELiSE: A tool to support algorithmic design for HPC co-scheduling

A
Scheduler

A
Co-Scheduler

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Develop a (co-)Scheduler
The Structure of the Schedulers

● In ELiSE all schedulers create a
class hierarchy, making it easier to
extend and combine algorithms into
a new scheduler

● The root of the hierarchy is the
Scheduler abstract class. It defines
the specifications for the rest of the
scheduling algorithms

● The Co-Scheduler abstract class
extends Scheduler to include
co-scheduling schemes

● All well known algorithms like FCFS,
SJF, EASY Backfill, Conservative
Backfill, etc. can be implemented

ELiSE: Develop a (co-)SchedulerELiSE: A tool to support algorithmic design for HPC co-scheduling

A
Scheduler

C
FCFS

Scheduler

A
Co-Scheduler

C
EASY

Co-Scheduler

C
Filler

Co-Scheduler

C
EASY

Scheduler

C
Conservative

Scheduler

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Develop a (co-)Scheduler
Examples of implemented (co-)Schedulers

ELiSE: Develop a (co-)SchedulerELiSE: A tool to support algorithmic design for HPC co-scheduling

Scheduler Description

Conservative FCFS Implements the SLURM’s standard scheduling
algorithm

EASY Co-scheduler Deploys jobs in arrival order, co-allocating on half
nodes, with EASY backfilling

Shortest / Longest / Largest
Job First Co-scheduler

Prioritizes shortest / longest / largest jobs in the
waiting queue

Popularity Co-scheduler Prioritizes co-execution-friendly jobs

Filler Co-scheduler Sacrifices user fairness by re-ordering the waiting
queue in order to increase system utilization

Two Factors (SJF/Pop-Filler) Co-scheduler Combination of Filler and SJF/Popularity
co-schedulers

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Develop a (co-)Scheduler
A (co-)Schedulers study based on the Makespan Speedup metric

ELiSE: Develop a (co-)SchedulerELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Overview

Tests
● Validation: test ELiSE by comparing small scale results with a real system
● Co-scheduling Results: assess first co-scheduling outcomes
● Performance: compare real processing time against simulation time across workloads and clusters

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Overview

Tests
● Validation: test ELiSE by comparing small scale results with a real system
● Co-scheduling Results: assess first co-scheduling outcomes
● Performance: compare real processing time against simulation time across workloads and clusters

Benchmarks
● NPB suite, D and E classes
● 64, 128, 512, 1024 process count
● Heatmap of Speedups from real systems

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Overview

Tests
● Validation: test ELiSE by comparing small scale results with a real system
● Co-scheduling Results: assess first co-scheduling outcomes
● Performance: compare real processing time against simulation time across workloads and clusters

Benchmarks
● NPB suite, D and E classes
● 64, 128, 512, 1024 process count
● Heatmap of Speedups from real systems

Metrics
● Makespan: total time required to complete a set of jobs
● Job turnaround time: total time taken for a job from submission to completion
● System utilization: the percentage of the system that is in use until the waiting queue is empty
● Simulated and Real Time Ratio: simulated makespan / real time in simulated days per real hour

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Overview

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Experimental Setup
ARIS
CPU Type Intel Xeon E5-2680v2 (Ivy Bridge), 2.8 GHz
CPUs per Node 2
Cores per CPU 10
Cores per Node 20
Hyperthreading OFF
Memory per Node 64 GB
Network Infiniband FDR, 56 Gb/s

Marconi
CPU Type Intel Xeon 8160 (SkyLake), 2.10 GHz
CPUs per Node 2
Cores per CPU 24
Cores per Node 48
Hyperthreading OFF
Memory per Node 196 GB
Network Intel Omni-Path, 100 Gb/s

Grid5000 (Grvingt)
CPU Type Intel Xeon Gold 6130, 2.10 GHz
CPUs per Node 2
Cores per CPU 16
Cores per Node 32
Hyperthreading OFF
Memory per Node 192 GB
Network Intel Omni-Path, 100 Gb/s

Used for validation

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Validation

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Co-scheduling ValidationFCFS Validation

● 6 experiments: 2×(48 jobs, 1h), 2×(136 jobs,
2–3h), 2×(136 jobs, 3–4h)

● Point: turnaround time of one job
● Real vs. simulated times: low gap
● Differences due to:

○ slight per-job execution time variation
○ system overhead
○ scheduler overhead

● Extended OAR to support co-location
● 30 experiments: 6 application mixes with

increasing Mean Job Speedup; 5 job shuffles
per mix

● Results vs. reality: close match
● Mean Absolute Percentage Error (MAPE) ≤15%

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Validation

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Co-scheduling ValidationFCFS Validation

● 6 experiments: 2×(48 jobs, 1h), 2×(136 jobs,
2–3h), 2×(136 jobs, 3–4h)

● Point: turnaround time of one job
● Real vs. simulated times: low gap
● Differences due to:

○ slight per-job execution time variation
○ system overhead
○ scheduler overhead

● Extended OAR to support co-location
● 30 experiments: 6 application mixes with

increasing Mean Job Speedup; 5 job shuffles
per mix

● Results vs. reality: close match
● Mean Absolute Percentage Error (MAPE) ≤15%

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Co-scheduling Results

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Process Count DiversityMJS & MS correlation

● 4 workloads, 5 shuffles each; cluster: 100
nodes, 48 cores

● Each workload: 500 jobs from Marconi
system applications; selection based on
progressively increasing Mean Job Speedup

● Correlation between MJS and MS
● High Makespan improvement over EASY
● Process count: 256 across 4 workloads

● 4 workloads, 500 jobs each from ARIS
system; with increasing process count
diversity

● Greater process count diversity → reduced
benefits from simple co-scheduling

● Cause: resource fragmentation; effect: low
System Utilization (from ELiSE diagrams)

Mean Job Speedup Makespan Improvement
1.07 24.42 %
1.10 25.29 %
1.12 25.87 %
1.15 30.63 %

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Co-scheduling Results

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Process Count DiversityMJS & MS correlation

● 4 workloads, 5 shuffles each; cluster: 100
nodes, 48 cores

● Each workload: 500 jobs from Marconi
system applications; selection based on
progressively increasing Mean Job Speedup

● Correlation between MJS and MS
● High Makespan improvement over EASY
● Process count: 256 across 4 workloads

● 4 workloads, 500 jobs each from ARIS
system; with increasing process count
diversity

● Greater process count diversity → reduced
benefits from simple co-scheduling

● Cause: resource fragmentation; effect: low
System Utilization (from ELiSE diagrams)

Mean Job Speedup Makespan Improvement
1.07 24.42 %
1.10 25.29 %
1.12 25.87 %
1.15 30.63 %

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Co-scheduling Results

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Process Count DiversityMJS & MS correlation

● 4 workloads, 5 shuffles each; cluster: 100
nodes, 48 cores

● Each workload: 500 jobs from Marconi
system applications; selection based on
progressively increasing Mean Job Speedup

● Correlation between MJS and MS
● High Makespan improvement over EASY
● Process count: 256 across 4 workloads

● Implemented Filler Co-scheduler; crude
filling of unutilized resources with best-fit
waiting jobs

● Co-scheduling benefits preserved but user
fairness compromised — FCFS principle
violations in waiting queue

Mean Job Speedup Makespan Improvement
1.07 24.42 %
1.10 25.29 %
1.12 25.87 %
1.15 30.63 %

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Performance

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Real WorkloadsSynthetic Workloads

● Different cluster and workload sizes; 50
repetitions per experiment

● Workload size: 10-fold increase → 10-fold
increase in simulation time

● Cluster size: 100-fold increase → 10-fold
increase in simulation time

● 2 real workloads in ELiSE from Parallel
Workload Archive

● First workload: 7 hours for 2-year trace for
both FCFS and EASY schedulers (parallel
execution)

● Second workload: maximum 20 hours for
1.5-year trace for both schedulers

● Fast simulation for small/medium cases,
tolerable times for very large cases

FCFS Scheduler
Workload Size Small Cluster

256 cores
Middle Cluster

25600 cores
Large Cluster
2560000 cores

100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83

EASY Scheduler
Workload Size Small Cluster

256 cores
Middle Cluster

25600 cores
Large Cluster
2560000 cores

100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83

Workload FCFS Scheduler EASY Scheduler

SDSC-SP2-1998
128 nodes, 64 ppn, 73496 jobs

116.87 117.77

KIT-FH2-2016
1152 nodes, 20 ppn, 114335 jobs

28.32 27.19

ELiSE: HPC Scheduling Estimator with co-location capabilities JSSPP, IPDPS 2025 Milan

ELiSE: Evaluation
Performance

ELiSE: EvaluationELiSE: A tool to support algorithmic design for HPC co-scheduling

Real WorkloadsSynthetic Workloads

● Different cluster and workload sizes; 50
repetitions per experiment

● Workload size: 10-fold increase → 10-fold
increase in simulation time

● Cluster size: 100-fold increase → 10-fold
increase in simulation time

● 2 real workloads in ELiSE from Parallel
Workload Archive

● First workload: 7 hours for 2-year trace for
both FCFS and EASY schedulers (parallel
execution)

● Second workload: maximum 20 hours for
1.5-year trace for both schedulers

● Fast simulation for small/medium cases,
tolerable times for very large cases

FCFS Scheduler
Workload Size Small Cluster

256 cores
Middle Cluster

25600 cores
Large Cluster
2560000 cores

100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83

EASY Scheduler
Workload Size Small Cluster

256 cores
Middle Cluster

25600 cores
Large Cluster
2560000 cores

100 2038.66 147.75 226.52
1000 838.74 14.31 12.56
10000 45.84 0.58 0.83

Workload FCFS Scheduler EASY Scheduler

SDSC-SP2-1998
128 nodes, 64 ppn, 73496 jobs

116.87 117.77

KIT-FH2-2016
1152 nodes, 20 ppn, 114335 jobs

28.32 27.19

ELiSE: Future WorkELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: Future Work

Focus on three main axes:

● Modelling capabilities:
○ Co-scheduling model extensions
○ Power consumption models, I/O bound applications, fault tolerance, etc

● User experience:
○ Additional visualization tools
○ Improved interfaces and API
○ Automated (co-)scheduling parameters optimization

● Performance improvement:
○ Faster large scale HPC simulation runs

ELiSE: More infoELiSE: A tool to support algorithmic design for HPC co-scheduling

Join the Sect

ELiSE: More info

Join us on (https://discord.gg/cABwcWhBSx)
● Join our community!
● Get notifications on the latest commits, bug fixes and releases
● Get updates on the next features and events
● Q&A

Join us on (https://github.com/cslab-ntua/elise)

● Contribute with your (co-)scheduler implementation
● Contribute with your HPC cluster benchmark
● Report bugs
● Suggest features

ELiSE: More infoELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE: More info

https://discord.gg/cABwcWhBSx
https://github.com/cslab-ntua/elise

ELiSEELiSE: A tool to support algorithmic design for HPC co-scheduling

ELiSE

THANK YOU FOR LISTENING

