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Objective and Motivation

Img Src: 
https://www.sciencedirect.com/science/article/pii/S2666675821001041

● The use of Deep Learning in Scientific computing is 

increased with data volume and complexity massively.

● Massive investment in cloud and relevant frameworks 

solves new problems and the total computing power in 

the world has quadrupled due to AI engine deployment

● Big Data on top of AI and ML infrastructure, along with 

clouds, is the new direction.

● Heterogeneity, high dimensionality, and complex 

relationships between variables.

● An efficient scalable system is the key to handling these 

challenges.
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Prior Art: Cylon 
• A distributed memory data-parallel 

dataframe is used to meet objectives.

• It utilizes the Bulk Synchronous Parallel (BSP) 
execution model and adopts SPMD pattern.

• Arrow columnar data is used with procedural 
abstractions through dataframe operators 
and communication operators.

• It comprises data structures such as 
dataframes/tables, columns, and scalars.

• Cylon has to use batch execution which is 
inefficient for heterogeneous data pipeline.
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Prior Art: PATHWAYS

● Pathways points the way to the direction of high-performance computing.

● It provides a sophisticated execution environment for deep learning jobs.

● Supports gang-scheduled dynamic and parallel asynchronous dispatch with conflict 

resolution on interdependent resource/output sharing.

● However, it is closed source and only compatible with Google core infrastructures.
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Prior Art: DASK, SPARK

● DASK and Spark Dataframe can 

be alternatives to CYLON, but 

CYLON Data frames 

outperforms both in multiple 

scaling operations.
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Prior Art: RAPIDS, RAY
● RAPIDS-cuDF is highly optimized for NVIDIA GPUs. GPU Cylon is in the 

pipeline for scaling operations and Radical-Cylon is designed to support 

GPUs. 

● RAY provides a distributed runtime that can be an alternative to radical-pilot 

as workflow engine. Cylon Integration with Ray will overcharge the 

distributed processing. We do have plans to work Cylon on Rays in Future 

Works.

● Ray's GPU support is restricted to scheduling and reservations where Radical 

pilot has the flexibility to control underlying resources.
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Prior Art: Radical-Cylon 
• Radical function provides heterogeneous 

execution with multiple data pipelines. 

• The design supports heterogeneous 
resources (CPUs, GPUs). 

• Cylon join and sort distributed operations 
can be executed in two different pipelines.

• It solves the use batch execution which is 
inefficient for heterogeneous data pipeline.

• Data (pre/post) processing can be 
implemented by reusing Radical Pilot for 
workflow and Cylon for dataframes.

• But Radical-Cylon does not have Deep 
Learning pipeline.
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● Cylon faces limitations in solving the challenge of multiple data pipeline execution. 

● It requires an underlying execution environment, and batch operations are 

performed as executables, hindering compatibility with heterogeneous execution.

● For instance, joining in one pipeline and ML inference in another is not supported. 

The need for an underlying task-based execution environment is apparent.

● Resource management is predetermined, relying on SLURM-based allocation, 

resulting in idle resources when a worker finishes a task, preventing their use for 

other pipelines in runtime.

● Lack of seamless execution of deep learning jobs.

Research Problems
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• We propose Deep-RC, a task-based execution environment for Cylon where deep 

learning tasks are executed as Radical functions.

• Resources are allocated to multiple tasks, controlled by the RP Scheduler.

• We have introduced Deep RC bridge for seamless execution of data preprocessing and 

model inferencing jobs.  

• To efficiently manage data loading in the Deep RC pipeline, the zero-copy data loader 

uses several workers to retrieve and preprocess data concurrently.

Proposed Research Solutions

• This design allows for the efficient scheduling, placement, and launching of independent 

tasks across various compute nodes. 

• It enables the execution of model inferencing jobs in separate pipelines.
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Deep RC: A Scalable Data Engineering and 
Deep Learning Pipeline

● Deep-RC is a scalable and modular runtime system 
that enables the efficient scheduling, placement, 
launching and execution of independent 
heterogeneous tasks across heterogeneous 
resources.

● It avoids the overheads of launching multiple MPI 
jobs by launching a single job and execute many 
MPI/GLOO/NCCL Python functions within.

● Cylon tasks take advantage of RP’s capabilities by 
executing multiple multi-node MPI/GLOO/NCCL 
functions efficiently.

● DL training/prediction, Cylon join and sort 
distributed operation can be executed in two 
different pipeline.
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Deep RC Bridge
● Deep RC bridge, which allows data to 

be preprocessed using Cylon 
distributed data frames that operate on 
top of MPI/UCX/GLOO and produce a 
Cylon Global Table (GT).

● The global table, which may be zero-copied and translated to pandas and other data frame 
formats, is used to create the distributed Cylon dataframe.

● Before batches are loaded into memory, data transformations and augmentation are frequently 
implemented.

● The zero-copy data loader uses several workers to retrieve and preprocess data in 
simultaneously, effectively managing data loading in the Deep RC pipeline.

● It divides the workload among several subprocesses, each of which is in charge of loading a 
section of the dataset, rather than depending on a single process to load data sequentially. By 
preventing training bottlenecks, this parallelism makes sure the model gets data ASAP.
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Deep RC Workflow
● Task Manager creates radical 

functions for all DL tasks
● Pilot manager allocates resources.
● Remote agent creates RP 

scheduler for multiple pipeline.
● Each scheduler resolves inter 

pipeline dependencies
● There are executors to handle 

each Deep Learning Jobs.
● Cylon dataframe will be used as a 

input for each Data Loader for 
model inference job.
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Heterogeneous Execution: Weak and 
Strong Scaling

● For strong and weak  scaling, Deep-RC archives 
expected behavior for heterogeneous data 
pipeline.

● Heterogeneous tasks (4 join/sort ws/ss) on a 
single execution.

● We use 35M rows for weak scaling and 3.5B 
rows for strong scaling with 40 cores/node.

● The scaling behavior of one data pipeline does 
not impact the other and shows expected 
scaling behavior.

● Resource allocation and releases did not create 
any circular dependencies.

● Increasing parallelism adds communication 
overheads; tasks are smaller.
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Model Training/Prediction performance

● We got the expected precision in all models and generated the results with 3 metrics (MAPE, 
MAE, MSE) shown in Table-3.

● Deep RC smoothly supports both PyTorch and Tensorflow, we test the Tensorflow pipeline using 
the Hydrology Model and the PyTorch pipeline using 11 models from Neuralforecast .

● Although the total execution times of the Deep RC and BM Deep Learning approaches differ by 1 
to 5 seconds, training time is less and does not impact on prediction process. 

● Aside from the comparable performance, we observe a constant overhead when using Deep RC 
in strong scaling operations despite increasing parallelism.
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Model Training/Prediction performance
● We see constant overheads between 6 

to 8 seconds compared to a total time of 
6482.24 to 14456.64 seconds which is 
very negligible.

● We have developed 11 pipelines with 
one Cylon join and 11 deep learning 
inferencing jobs using an LSTM-based 
Hydrology and NeuralForecast model.

● It significantly decreased 75.9 and 3.28 
seconds in both experiments, which is 
important for inferencing tasks.

● Because any commercial cloud platform 
that manages thousands of requests 
would be significantly impacted.
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Limitations and Future Works

● However, when we attempted to infer LLMs, the RP scheduler and resource 
allocation module—had trouble assigning resources for Deep RC. 

● To manage such jobs, a design modification incorporating multi-level parallelism is 
necessary. This significant design modification will be presented separately because 
we view it as a future work.

● The unified execution model depends on the Arrow engine, and there are multiple 
scopes to optimize Arrow-based data queries. 

● We plan to support all multi-tenancy requirements, e.g. prioritization, performance 
isolation, and resource tracking in the future.
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Conclusions 

● Deep RC offers an unified framework that simplifies model training, prediction, and 
data processing under a centralized execution paradigm by tackling the challenges 
of resource management and varied pipeline execution.

● The proposed design tackles the intricacies of resource management and 
significantly decreased 75.9  and 3.28 seconds in both experiments, which is 
important for inferencing tasks.

● This transformation introduces an efficient resource management and scheduling 
framework that interfaces between the client and cluster nodes. 

● Deep RC's versatility across a range of distributed tasks, including the capacity to 
smoothly interleave client workloads, optimize deep learning execution pipelines, 
and reduce computational overhead.
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